Spaces:
Sleeping
Sleeping
File size: 8,211 Bytes
88a5bcf 4ea2b30 33deb8d 4ea2b30 b5a3ebb 4ea2b30 7f98acf b5a3ebb 7f98acf 4ea2b30 88a5bcf 7f98acf 88a5bcf 4ea2b30 88a5bcf 4ea2b30 88a5bcf b5a3ebb 05b69a5 b5a3ebb 88a5bcf 05b69a5 88a5bcf b5a3ebb 88a5bcf 7f98acf b5a3ebb 86ac070 b5a3ebb 1f48fed b5a3ebb 335e8a6 05b69a5 335e8a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import os
from glob import glob
from typing import Optional
import bm25s
import wandb
import weave
from Stemmer import Stemmer
LANGUAGE_DICT = {
"english": "en",
"french": "fr",
"german": "de",
}
class BM25sRetriever(weave.Model):
"""
`BM25sRetriever` is a class that provides functionality for indexing and
retrieving documents using the [BM25-Sparse](https://github.com/xhluca/bm25s).
Args:
language (str): The language of the documents to be indexed and retrieved.
use_stemmer (bool): A flag indicating whether to use stemming during tokenization.
retriever (Optional[bm25s.BM25]): An instance of the BM25 retriever. If not provided,
a new instance is created.
"""
language: str
use_stemmer: bool
_retriever: Optional[bm25s.BM25]
def __init__(
self,
language: str = "english",
use_stemmer: bool = True,
retriever: Optional[bm25s.BM25] = None,
):
super().__init__(language=language, use_stemmer=use_stemmer)
self._retriever = retriever or bm25s.BM25()
def index(self, chunk_dataset_name: str, index_name: Optional[str] = None):
"""
Indexes a dataset of text chunks using the BM25 algorithm.
This function takes a dataset of text chunks identified by `chunk_dataset_name`,
tokenizes the text using the BM25 tokenizer with optional stemming, and indexes
the tokenized text using the BM25 retriever. If an `index_name` is provided, the
index is saved to disk and logged as a Weights & Biases artifact.
!!! example "Example Usage"
```python
import weave
from dotenv import load_dotenv
import wandb
from medrag_multi_modal.retrieval import BM25sRetriever
load_dotenv()
weave.init(project_name="ml-colabs/medrag-multi-modal")
wandb.init(project="medrag-multi-modal", entity="ml-colabs", job_type="bm25s-index")
retriever = BM25sRetriever()
retriever.index(chunk_dataset_name="grays-anatomy-text:v13", index_name="grays-anatomy-bm25s")
```
Args:
chunk_dataset_name (str): The name of the dataset containing text chunks to be indexed.
index_name (Optional[str]): The name to save the index under. If provided, the index
is saved to disk and logged as a Weights & Biases artifact.
"""
chunk_dataset = weave.ref(chunk_dataset_name).get().rows
corpus = [row["text"] for row in chunk_dataset]
corpus_tokens = bm25s.tokenize(
corpus,
stopwords=LANGUAGE_DICT[self.language],
stemmer=Stemmer(self.language) if self.use_stemmer else None,
)
self._retriever.index(corpus_tokens)
if index_name:
self._retriever.save(
index_name, corpus=[dict(row) for row in chunk_dataset]
)
if wandb.run:
artifact = wandb.Artifact(
name=index_name,
type="bm25s-index",
metadata={
"language": self.language,
"use_stemmer": self.use_stemmer,
},
)
artifact.add_dir(index_name, name=index_name)
artifact.save()
@classmethod
def from_wandb_artifact(cls, index_artifact_address: str):
"""
Creates an instance of the class from a Weights & Biases artifact.
This class method retrieves a BM25 index artifact from Weights & Biases,
downloads the artifact, and loads the BM25 retriever with the index and its
associated corpus. The method also extracts metadata from the artifact to
initialize the class instance with the appropriate language and stemming
settings.
!!! example "Example Usage"
```python
import weave
from dotenv import load_dotenv
from medrag_multi_modal.retrieval import BM25sRetriever
load_dotenv()
weave.init(project_name="ml-colabs/medrag-multi-modal")
retriever = BM25sRetriever.from_wandb_artifact(
index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-bm25s:latest"
)
```
Args:
index_artifact_address (str): The address of the Weights & Biases artifact
containing the BM25 index.
Returns:
An instance of the class initialized with the BM25 retriever and metadata
from the artifact.
"""
if wandb.run:
artifact = wandb.run.use_artifact(
index_artifact_address, type="bm25s-index"
)
artifact_dir = artifact.download()
else:
api = wandb.Api()
artifact = api.artifact(index_artifact_address)
artifact_dir = artifact.download()
retriever = bm25s.BM25.load(
glob(os.path.join(artifact_dir, "*"))[0], load_corpus=True
)
metadata = artifact.metadata
return cls(
language=metadata["language"],
use_stemmer=metadata["use_stemmer"],
retriever=retriever,
)
@weave.op()
def retrieve(self, query: str, top_k: int = 2):
"""
Retrieves the top-k most relevant chunks for a given query using the BM25 algorithm.
This method tokenizes the input query using the BM25 tokenizer, which takes into
account the language-specific stopwords and optional stemming. It then retrieves
the top-k most relevant chunks from the BM25 index based on the tokenized query.
The results are returned as a list of dictionaries, each containing a chunk and
its corresponding relevance score.
Args:
query (str): The input query string to search for relevant chunks.
top_k (int, optional): The number of top relevant chunks to retrieve. Defaults to 2.
Returns:
list: A list of dictionaries, each containing a retrieved chunk and its
relevance score.
"""
query_tokens = bm25s.tokenize(
query,
stopwords=LANGUAGE_DICT[self.language],
stemmer=Stemmer(self.language) if self.use_stemmer else None,
)
results = self._retriever.retrieve(query_tokens, k=top_k)
retrieved_chunks = []
for chunk, score in zip(
results.documents.flatten().tolist(),
results.scores.flatten().tolist(),
):
retrieved_chunks.append({**chunk, **{"score": score}})
return retrieved_chunks
@weave.op()
def predict(self, query: str, top_k: int = 2):
"""
Predicts the top-k most relevant chunks for a given query using the BM25 algorithm.
This function is a wrapper around the `retrieve` method. It takes an input query string,
tokenizes it using the BM25 tokenizer, and retrieves the top-k most relevant chunks from
the BM25 index. The results are returned as a list of dictionaries, each containing a chunk
and its corresponding relevance score.
!!! example "Example Usage"
```python
import weave
from dotenv import load_dotenv
from medrag_multi_modal.retrieval import BM25sRetriever
load_dotenv()
weave.init(project_name="ml-colabs/medrag-multi-modal")
retriever = BM25sRetriever.from_wandb_artifact(
index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-bm25s:latest"
)
retrieved_chunks = retriever.predict(query="What are Ribosomes?")
```
Args:
query (str): The input query string to search for relevant chunks.
top_k (int, optional): The number of top relevant chunks to retrieve. Defaults to 2.
Returns:
list: A list of dictionaries, each containing a retrieved chunk and its relevance score.
"""
return self.retrieve(query, top_k)
|