File size: 5,076 Bytes
170d9a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import asyncio

import weave

from medrag_multi_modal.assistant import LLMClient, MedQAAssistant
from medrag_multi_modal.metrics import MMLUOptionAccuracy
from medrag_multi_modal.retrieval.text_retrieval import (
    BM25sRetriever,
    ContrieverRetriever,
    MedCPTRetriever,
    NVEmbed2Retriever,
)


def test_mmlu_correctness_anatomy_bm25s(model_name: str):
    weave.init("ml-colabs/medrag-multi-modal")
    retriever = BM25sRetriever().from_index(
        index_repo_id="ashwiniai/medrag-text-corpus-chunks-bm25s"
    )
    llm_client = LLMClient(model_name=model_name)
    medqa_assistant = MedQAAssistant(
        llm_client=llm_client,
        retriever=retriever,
        top_k_chunks_for_query=5,
        top_k_chunks_for_options=3,
    )
    dataset = weave.ref("mmlu-anatomy-test:v2").get()
    with weave.attributes(
        {"retriever": retriever.__class__.__name__, "llm": llm_client.model_name}
    ):
        evaluation = weave.Evaluation(
            dataset=dataset,
            scorers=[MMLUOptionAccuracy()],
            name="MMLU-Anatomy-BM25s",
        )
        summary = asyncio.run(
            evaluation.evaluate(
                medqa_assistant,
                __weave={"display_name": evaluation.name + ":" + llm_client.model_name},
            )
        )
    assert (
        summary["MMLUOptionAccuracy"]["correct"]["true_count"]
        > summary["MMLUOptionAccuracy"]["correct"]["false_count"]
    )


def test_mmlu_correctness_anatomy_contriever(model_name: str):
    weave.init("ml-colabs/medrag-multi-modal")
    retriever = ContrieverRetriever().from_index(
        index_repo_id="ashwiniai/medrag-text-corpus-chunks-contriever",
        chunk_dataset="ashwiniai/medrag-text-corpus-chunks",
    )
    llm_client = LLMClient(model_name=model_name)
    medqa_assistant = MedQAAssistant(
        llm_client=llm_client,
        retriever=retriever,
        top_k_chunks_for_query=5,
        top_k_chunks_for_options=3,
    )
    dataset = weave.ref("mmlu-anatomy-test:v2").get()
    with weave.attributes(
        {"retriever": retriever.__class__.__name__, "llm": llm_client.model_name}
    ):
        evaluation = weave.Evaluation(
            dataset=dataset,
            scorers=[MMLUOptionAccuracy()],
            name="MMLU-Anatomy-Contriever",
        )
        summary = asyncio.run(
            evaluation.evaluate(
                medqa_assistant,
                __weave={"display_name": evaluation.name + ":" + llm_client.model_name},
            )
        )
    assert (
        summary["MMLUOptionAccuracy"]["correct"]["true_count"]
        > summary["MMLUOptionAccuracy"]["correct"]["false_count"]
    )


def test_mmlu_correctness_anatomy_medcpt(model_name: str):
    weave.init("ml-colabs/medrag-multi-modal")
    retriever = MedCPTRetriever().from_index(
        index_repo_id="ashwiniai/medrag-text-corpus-chunks-medcpt",
        chunk_dataset="ashwiniai/medrag-text-corpus-chunks",
    )
    llm_client = LLMClient(model_name=model_name)
    medqa_assistant = MedQAAssistant(
        llm_client=llm_client,
        retriever=retriever,
        top_k_chunks_for_query=5,
        top_k_chunks_for_options=3,
    )
    dataset = weave.ref("mmlu-anatomy-test:v2").get()
    with weave.attributes(
        {"retriever": retriever.__class__.__name__, "llm": llm_client.model_name}
    ):
        evaluation = weave.Evaluation(
            dataset=dataset,
            scorers=[MMLUOptionAccuracy()],
            name="MMLU-Anatomy-MedCPT",
        )
        summary = asyncio.run(
            evaluation.evaluate(
                medqa_assistant,
                __weave={"display_name": evaluation.name + ":" + llm_client.model_name},
            )
        )
    assert (
        summary["MMLUOptionAccuracy"]["correct"]["true_count"]
        > summary["MMLUOptionAccuracy"]["correct"]["false_count"]
    )


def test_mmlu_correctness_anatomy_nvembed2(model_name: str):
    weave.init("ml-colabs/medrag-multi-modal")
    retriever = NVEmbed2Retriever().from_index(
        index_repo_id="ashwiniai/medrag-text-corpus-chunks-nv-embed-2",
        chunk_dataset="ashwiniai/medrag-text-corpus-chunks",
    )
    llm_client = LLMClient(model_name=model_name)
    medqa_assistant = MedQAAssistant(
        llm_client=llm_client,
        retriever=retriever,
        top_k_chunks_for_query=5,
        top_k_chunks_for_options=3,
    )
    dataset = weave.ref("mmlu-anatomy-test:v2").get()
    with weave.attributes(
        {"retriever": retriever.__class__.__name__, "llm": llm_client.model_name}
    ):
        evaluation = weave.Evaluation(
            dataset=dataset,
            scorers=[MMLUOptionAccuracy()],
            name="MMLU-Anatomy-NVEmbed2",
        )
        summary = asyncio.run(
            evaluation.evaluate(
                medqa_assistant,
                __weave={"display_name": evaluation.name + ":" + llm_client.model_name},
            )
        )
    assert (
        summary["MMLUOptionAccuracy"]["correct"]["true_count"]
        > summary["MMLUOptionAccuracy"]["correct"]["false_count"]
    )