File size: 1,397 Bytes
8d64162
 
 
7934a8e
70d9de4
8d64162
0d77bb1
d197e7f
 
 
96bca50
0d77bb1
 
 
96bca50
d197e7f
 
 
 
 
 
 
96bca50
 
d197e7f
70d9de4
 
 
 
af715dd
 
70d9de4
 
 
 
 
8d64162
 
 
7934a8e
 
 
8d64162
 
 
 
 
7934a8e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import base64
import io

import jsonlines
import torch
from PIL import Image

import wandb


def get_wandb_artifact(
    artifact_name: str,
    artifact_type: str,
    get_metadata: bool = False,
) -> str:
    if wandb.run:
        artifact = wandb.use_artifact(artifact_name, type=artifact_type)
        artifact_dir = artifact.download()
    else:
        api = wandb.Api()
        artifact = api.artifact(artifact_name)
        artifact_dir = artifact.download()
    if get_metadata:
        return artifact_dir, artifact.metadata
    return artifact_dir


def get_torch_backend():
    if torch.cuda.is_available():
        if torch.backends.cuda.is_built():
            return "cuda"
    if torch.backends.mps.is_available():
        if torch.backends.mps.is_built():
            return "mps"
        return "cpu"
    return "cpu"


def base64_encode_image(image: Image.Image, mimetype: str) -> str:
    image.load()
    if image.mode not in ("RGB", "RGBA"):
        image = image.convert("RGB")
    byte_arr = io.BytesIO()
    image.save(byte_arr, format="PNG")
    encoded_string = base64.b64encode(byte_arr.getvalue()).decode("utf-8")
    encoded_string = f"data:{mimetype};base64,{encoded_string}"
    return str(encoded_string)


def read_jsonl_file(file_path: str) -> list[dict[str, any]]:
    with jsonlines.open(file_path) as reader:
        for obj in reader:
            return obj