Spaces:
Sleeping
Sleeping
import os | |
from typing import Optional | |
import safetensors | |
import safetensors.torch | |
import torch | |
import torch.nn.functional as F | |
import weave | |
from transformers import ( | |
AutoModel, | |
AutoTokenizer, | |
BertPreTrainedModel, | |
PreTrainedTokenizerFast, | |
) | |
from ..utils import get_torch_backend, get_wandb_artifact | |
from .common import SimilarityMetric, argsort_scores, mean_pooling, save_vector_index | |
class ContrieverRetriever(weave.Model): | |
""" | |
`ContrieverRetriever` is a class to perform retrieval tasks using the Contriever model. | |
It provides methods to encode text data into embeddings, index a dataset of text chunks, | |
and retrieve the most relevant chunks for a given query based on similarity metrics. | |
Args: | |
model_name (str): The name of the pre-trained model to use for encoding. | |
vector_index (Optional[torch.Tensor]): The tensor containing the vector representations | |
of the indexed chunks. | |
chunk_dataset (Optional[list[dict]]): The weave dataset of text chunks to be indexed. | |
""" | |
model_name: str | |
_chunk_dataset: Optional[list[dict]] | |
_tokenizer: PreTrainedTokenizerFast | |
_model: BertPreTrainedModel | |
_vector_index: Optional[torch.Tensor] | |
def __init__( | |
self, | |
model_name: str = "facebook/contriever", | |
vector_index: Optional[torch.Tensor] = None, | |
chunk_dataset: Optional[list[dict]] = None, | |
): | |
super().__init__(model_name=model_name) | |
self._tokenizer = AutoTokenizer.from_pretrained(self.model_name) | |
self._model = AutoModel.from_pretrained(self.model_name) | |
self._vector_index = vector_index | |
self._chunk_dataset = chunk_dataset | |
def encode(self, corpus: list[str]) -> torch.Tensor: | |
inputs = self._tokenizer( | |
corpus, padding=True, truncation=True, return_tensors="pt" | |
) | |
outputs = self._model(**inputs) | |
return mean_pooling(outputs[0], inputs["attention_mask"]) | |
def index(self, chunk_dataset_name: str, index_name: Optional[str] = None): | |
""" | |
Indexes a dataset of text chunks and optionally saves the vector index to a file. | |
This method retrieves a dataset of text chunks from a Weave reference, encodes the | |
text chunks into vector representations using the Contriever model, and stores the | |
resulting vector index. If an index name is provided, the vector index is saved to | |
a file in the safetensors format. Additionally, if a Weave run is active, the vector | |
index file is logged as an artifact to Weave. | |
!!! example "Example Usage" | |
```python | |
import weave | |
from dotenv import load_dotenv | |
import wandb | |
from medrag_multi_modal.retrieval import ContrieverRetriever, SimilarityMetric | |
load_dotenv() | |
weave.init(project_name="ml-colabs/medrag-multi-modal") | |
wandb.init(project="medrag-multi-modal", entity="ml-colabs", job_type="contriever-index") | |
retriever = ContrieverRetriever(model_name="facebook/contriever") | |
retriever.index( | |
chunk_dataset_name="grays-anatomy-chunks:v0", | |
index_name="grays-anatomy-contriever", | |
) | |
``` | |
Args: | |
chunk_dataset_name (str): The name of the Weave dataset containing the text chunks | |
to be indexed. | |
index_name (Optional[str]): The name of the index artifact to be saved. If provided, | |
the vector index is saved to a file and logged as an artifact to Weave. | |
""" | |
self._chunk_dataset = weave.ref(chunk_dataset_name).get().rows | |
corpus = [row["text"] for row in self._chunk_dataset] | |
with torch.no_grad(): | |
vector_index = self.encode(corpus) | |
self._vector_index = vector_index | |
if index_name: | |
save_vector_index( | |
self._vector_index, | |
"contriever-index", | |
index_name, | |
{"model_name": self.model_name}, | |
) | |
def from_wandb_artifact(cls, chunk_dataset_name: str, index_artifact_address: str): | |
""" | |
Creates an instance of the class from a Weave artifact. | |
This method retrieves a vector index and metadata from a Weave artifact stored in | |
Weights & Biases (wandb). It also retrieves a dataset of text chunks from a Weave | |
reference. The vector index is loaded from a safetensors file and moved to the | |
appropriate device (CPU or GPU). The text chunks are converted into a list of | |
dictionaries. The method then returns an instance of the class initialized with | |
the retrieved model name, vector index, and chunk dataset. | |
!!! example "Example Usage" | |
```python | |
import weave | |
from dotenv import load_dotenv | |
from medrag_multi_modal.retrieval import ContrieverRetriever, SimilarityMetric | |
load_dotenv() | |
weave.init(project_name="ml-colabs/medrag-multi-modal") | |
retriever = ContrieverRetriever.from_wandb_artifact( | |
chunk_dataset_name="grays-anatomy-chunks:v0", | |
index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-contriever:v1", | |
) | |
``` | |
Args: | |
chunk_dataset_name (str): The name of the Weave dataset containing the text chunks. | |
index_artifact_address (str): The address of the Weave artifact containing the | |
vector index. | |
Returns: | |
An instance of the class initialized with the retrieved model name, vector index, | |
and chunk dataset. | |
""" | |
artifact_dir, metadata = get_wandb_artifact( | |
index_artifact_address, "contriever-index", get_metadata=True | |
) | |
with safetensors.torch.safe_open( | |
os.path.join(artifact_dir, "vector_index.safetensors"), framework="pt" | |
) as f: | |
vector_index = f.get_tensor("vector_index") | |
device = torch.device(get_torch_backend()) | |
vector_index = vector_index.to(device) | |
chunk_dataset = [dict(row) for row in weave.ref(chunk_dataset_name).get().rows] | |
return cls( | |
model_name=metadata["model_name"], | |
vector_index=vector_index, | |
chunk_dataset=chunk_dataset, | |
) | |
def retrieve( | |
self, | |
query: str, | |
top_k: int = 2, | |
metric: SimilarityMetric = SimilarityMetric.COSINE, | |
): | |
""" | |
Retrieves the top-k most relevant chunks for a given query using the specified similarity metric. | |
This method encodes the input query into an embedding and computes similarity scores between | |
the query embedding and the precomputed vector index. The similarity metric can be either | |
cosine similarity or Euclidean distance. The top-k chunks with the highest similarity scores | |
are returned as a list of dictionaries, each containing a chunk and its corresponding score. | |
Args: | |
query (str): The input query string to search for relevant chunks. | |
top_k (int, optional): The number of top relevant chunks to retrieve. Defaults to 2. | |
metric (SimilarityMetric, optional): The similarity metric to use for scoring. | |
Returns: | |
list: A list of dictionaries, each containing a retrieved chunk and its relevance score. | |
""" | |
query = [query] | |
device = torch.device(get_torch_backend()) | |
with torch.no_grad(): | |
query_embedding = self.encode(query).to(device) | |
if metric == SimilarityMetric.EUCLIDEAN: | |
scores = torch.squeeze(query_embedding @ self._vector_index.T) | |
else: | |
scores = F.cosine_similarity(query_embedding, self._vector_index) | |
scores = scores.cpu().numpy().tolist() | |
scores = argsort_scores(scores, descending=True)[:top_k] | |
retrieved_chunks = [] | |
for score in scores: | |
retrieved_chunks.append( | |
{ | |
**self._chunk_dataset[score["original_index"]], | |
**{"score": score["item"]}, | |
} | |
) | |
return retrieved_chunks | |
def predict( | |
self, | |
query: str, | |
top_k: int = 2, | |
metric: SimilarityMetric = SimilarityMetric.COSINE, | |
): | |
""" | |
Predicts the top-k most relevant chunks for a given query using the specified similarity metric. | |
This function is a wrapper around the `retrieve` method. It takes an input query string, | |
retrieves the top-k most relevant chunks from the precomputed vector index based on the | |
specified similarity metric, and returns the results as a list of dictionaries, each containing | |
a chunk and its corresponding relevance score. | |
!!! example "Example Usage" | |
```python | |
import weave | |
from dotenv import load_dotenv | |
from medrag_multi_modal.retrieval import ContrieverRetriever, SimilarityMetric | |
load_dotenv() | |
weave.init(project_name="ml-colabs/medrag-multi-modal") | |
retriever = ContrieverRetriever.from_wandb_artifact( | |
chunk_dataset_name="grays-anatomy-chunks:v0", | |
index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-contriever:v1", | |
) | |
scores = retriever.predict(query="What are Ribosomes?", metric=SimilarityMetric.COSINE) | |
``` | |
Args: | |
query (str): The input query string to search for relevant chunks. | |
top_k (int, optional): The number of top relevant chunks to retrieve. Defaults to 2. | |
metric (SimilarityMetric, optional): The similarity metric to use for scoring. Defaults to cosine similarity. | |
Returns: | |
list: A list of dictionaries, each containing a retrieved chunk and its relevance score. | |
""" | |
return self.retrieve(query, top_k, metric) | |