geekyrakshit's picture
add: TextImageLoader
7b862ff
raw
history blame
5.34 kB
import asyncio
import os
from typing import Optional
import pymupdf4llm
import PyPDF2
import rich
import weave
from firerequests import FireRequests
class TextLoader:
"""
A class for loading text from a PDF file, processing it into markdown, and optionally publishing it to a Weave dataset.
This class handles the downloading of a PDF file from a given URL if it does not already exist locally.
It uses PyPDF2 to read the PDF and pymupdf4llm to convert pages to markdown. The processed pages are stored in a list
of Page objects, which can be optionally published to a Weave dataset.
!!! example "Example Usage"
```python
import asyncio
import weave
from medrag_multi_modal.document_loader import TextLoader
weave.init(project_name="ml-colabs/medrag-multi-modal")
url = "https://archive.org/download/GraysAnatomy41E2015PDF/Grays%20Anatomy-41%20E%20%282015%29%20%5BPDF%5D.pdf"
loader = TextLoader(
url=url,
document_name="Gray's Anatomy",
document_file_path="grays_anatomy.pdf",
)
asyncio.run(
loader.load_data(start_page=9, end_page=15, weave_dataset_name="grays-anatomy-text")
)
```
Args:
url (str): The URL of the PDF file to download if not present locally.
document_name (str): The name of the document for metadata purposes.
document_file_path (str): The local file path where the PDF is stored or will be downloaded.
"""
def __init__(self, url: str, document_name: str, document_file_path: str):
self.url = url
self.document_name = document_name
self.document_file_path = document_file_path
if not os.path.exists(self.document_file_path):
FireRequests().download(url, filename=self.document_file_path)
with open(self.document_file_path, "rb") as file:
pdf_reader = PyPDF2.PdfReader(file)
self.page_count = len(pdf_reader.pages)
def get_page_indices(
self, start_page: Optional[int] = None, end_page: Optional[int] = None
):
if start_page:
if start_page > self.page_count:
raise ValueError(
f"Start page {start_page} is greater than the total page count {self.page_count}"
)
else:
start_page = 0
if end_page:
if end_page > self.page_count:
raise ValueError(
f"End page {end_page} is greater than the total page count {self.page_count}"
)
else:
end_page = self.page_count - 1
return start_page, end_page
async def load_data(
self,
start_page: Optional[int] = None,
end_page: Optional[int] = None,
weave_dataset_name: Optional[str] = None,
):
"""
Asynchronously loads text from a PDF file specified by a URL or local file path,
processes the text into markdown format, and optionally publishes it to a Weave dataset.
This function downloads a PDF from a given URL if it does not already exist locally,
reads the specified range of pages, converts each page's content to markdown, and
returns a list of Page objects containing the text and metadata. It uses PyPDF2 to read
the PDF and pymupdf4llm to convert pages to markdown. It processes pages concurrently using
`asyncio` for efficiency. If a weave_dataset_name is provided, the processed pages are published
to a Weave dataset.
Args:
start_page (Optional[int]): The starting page index (0-based) to process. Defaults to the first page.
end_page (Optional[int]): The ending page index (0-based) to process. Defaults to the last page.
weave_dataset_name (Optional[str]): The name of the Weave dataset to publish the pages to, if provided.
Returns:
list[Page]: A list of Page objects, each containing the text and metadata for a processed page.
Raises:
ValueError: If the specified start_page or end_page is out of bounds of the document's page count.
"""
start_page, end_page = self.get_page_indices(start_page, end_page)
pages = []
processed_pages_counter: int = 1
total_pages = end_page - start_page
async def process_page(page_idx):
nonlocal processed_pages_counter
text = pymupdf4llm.to_markdown(
doc=self.document_file_path, pages=[page_idx], show_progress=False
)
pages.append(
{
"text": text,
"page_idx": page_idx,
"document_name": self.document_name,
"file_path": self.document_file_path,
"file_url": self.url,
}
)
rich.print(f"Processed pages {processed_pages_counter}/{total_pages}")
processed_pages_counter += 1
tasks = [process_page(page_idx) for page_idx in range(start_page, end_page)]
for task in asyncio.as_completed(tasks):
await task
if weave_dataset_name:
weave.publish(weave.Dataset(name=weave_dataset_name, rows=pages))
return pages