Spaces:
Running
Running
import asyncio | |
import os | |
from typing import Optional | |
import pymupdf4llm | |
import PyPDF2 | |
import rich | |
import weave | |
from firerequests import FireRequests | |
from pydantic import BaseModel | |
class Page(BaseModel): | |
text: str | |
page_idx: int | |
document_name: str | |
file_path: str | |
file_url: str | |
async def load_text_from_pdf( | |
url: str, | |
document_name: str, | |
document_file_path: str, | |
start_page: Optional[int] = None, | |
end_page: Optional[int] = None, | |
weave_dataset_name: Optional[str] = None, | |
) -> list[Page]: | |
""" | |
Asynchronously loads text from a PDF file specified by a URL or local file path, | |
processes the text into markdown format, and optionally publishes it to a Weave dataset. | |
This function downloads a PDF from a given URL if it does not already exist locally, | |
reads the specified range of pages, converts each page's content to markdown, and | |
returns a list of Page objects containing the text and metadata. It uses PyPDF2 to read | |
the PDF and pymupdf4llm to convert pages to markdown. It processes pages concurrently using | |
`asyncio` for efficiency. If a weave_dataset_name is provided, the processed pages are published | |
to a Weave dataset. | |
!!! example "Example usage" | |
```python | |
import asyncio | |
import weave | |
from medrag_multi_modal.document_loader import load_text_from_pdf | |
weave.init(project_name="ml-colabs/medrag-multi-modal") | |
url = "https://archive.org/download/GraysAnatomy41E2015PDF/Grays%20Anatomy-41%20E%20%282015%29%20%5BPDF%5D.pdf" | |
asyncio.run( | |
load_text_from_pdf( | |
url=url, | |
document_name="Gray's Anatomy", | |
start_page=9, | |
end_page=15, | |
document_file_path="grays_anatomy.pdf", | |
) | |
) | |
``` | |
Args: | |
url (str): The URL of the PDF file to download if not present locally. | |
document_name (str): The name of the document for metadata purposes. | |
document_file_path (str): The local file path where the PDF is stored or will be downloaded. | |
start_page (Optional[int]): The starting page index (0-based) to process. Defaults to the first page. | |
end_page (Optional[int]): The ending page index (0-based) to process. Defaults to the last page. | |
weave_dataset_name (Optional[str]): The name of the Weave dataset to publish the pages to, if provided. | |
Returns: | |
list[Page]: A list of Page objects, each containing the text and metadata for a processed page. | |
Raises: | |
ValueError: If the specified start_page or end_page is out of bounds of the document's page count. | |
""" | |
if not os.path.exists(document_file_path): | |
FireRequests().download(url, filename=document_file_path) | |
with open(document_file_path, "rb") as file: | |
pdf_reader = PyPDF2.PdfReader(file) | |
page_count = len(pdf_reader.pages) | |
print(f"Page count: {page_count}") | |
if start_page: | |
if start_page > page_count: | |
raise ValueError( | |
f"Start page {start_page} is greater than the total page count {page_count}" | |
) | |
else: | |
start_page = 0 | |
if end_page: | |
if end_page > page_count: | |
raise ValueError( | |
f"End page {end_page} is greater than the total page count {page_count}" | |
) | |
else: | |
end_page = page_count - 1 | |
pages: list[Page] = [] | |
processed_pages_counter: int = 1 | |
total_pages = end_page - start_page | |
async def process_page(page_idx): | |
nonlocal processed_pages_counter | |
text = pymupdf4llm.to_markdown( | |
doc=document_file_path, pages=[page_idx], show_progress=False | |
) | |
pages.append( | |
Page( | |
text=text, | |
page_idx=page_idx, | |
document_name=document_name, | |
file_path=document_file_path, | |
file_url=url, | |
) | |
) | |
rich.print(f"Processed pages {processed_pages_counter}/{total_pages}") | |
processed_pages_counter += 1 | |
tasks = [process_page(page_idx) for page_idx in range(start_page, end_page)] | |
for task in asyncio.as_completed(tasks): | |
await task | |
if weave_dataset_name: | |
weave.publish(weave.Dataset(name=weave_dataset_name, rows=pages)) | |
return pages | |