Spaces:
Running
Running
Commit
·
3b25ef5
1
Parent(s):
05b69a5
update: docs for colpali and nv-embed-v2
Browse files
medrag_multi_modal/retrieval/colpali_retrieval.py
CHANGED
@@ -21,55 +21,6 @@ class CalPaliRetriever(weave.Model):
|
|
21 |
It can be initialized with a pre-trained model or from a specified W&B artifact. The class
|
22 |
also provides methods to index new data and to predict/retrieve documents based on a query.
|
23 |
|
24 |
-
!!! example "Indexing Data"
|
25 |
-
First you need to install `Byaldi` library by Answer.ai.
|
26 |
-
|
27 |
-
```bash
|
28 |
-
uv pip install Byaldi>=0.0.5
|
29 |
-
```
|
30 |
-
|
31 |
-
Next, you can index the data by running the following code:
|
32 |
-
|
33 |
-
```python
|
34 |
-
import wandb
|
35 |
-
from medrag_multi_modal.retrieval import CalPaliRetriever
|
36 |
-
|
37 |
-
wandb.init(project="medrag-multi-modal", entity="ml-colabs", job_type="index")
|
38 |
-
retriever = CalPaliRetriever()
|
39 |
-
retriever.index(
|
40 |
-
data_artifact_name="ml-colabs/medrag-multi-modal/grays-anatomy-images:v1",
|
41 |
-
weave_dataset_name="grays-anatomy-images:v0",
|
42 |
-
index_name="grays-anatomy",
|
43 |
-
)
|
44 |
-
```
|
45 |
-
|
46 |
-
!!! example "Retrieving Documents"
|
47 |
-
First you need to install `Byaldi` library by Answer.ai.
|
48 |
-
|
49 |
-
```bash
|
50 |
-
uv pip install Byaldi>=0.0.5
|
51 |
-
```
|
52 |
-
|
53 |
-
Next, you can retrieve the documents by running the following code:
|
54 |
-
|
55 |
-
```python
|
56 |
-
import weave
|
57 |
-
|
58 |
-
import wandb
|
59 |
-
from medrag_multi_modal.retrieval import CalPaliRetriever
|
60 |
-
|
61 |
-
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
62 |
-
retriever = CalPaliRetriever.from_wandb_artifact(
|
63 |
-
index_artifact_name="ml-colabs/medrag-multi-modal/grays-anatomy:v0",
|
64 |
-
metadata_dataset_name="grays-anatomy-images:v0",
|
65 |
-
data_artifact_name="ml-colabs/medrag-multi-modal/grays-anatomy-images:v1",
|
66 |
-
)
|
67 |
-
retriever.predict(
|
68 |
-
query="which neurotransmitters convey information between Merkel cells and sensory afferents?",
|
69 |
-
top_k=3,
|
70 |
-
)
|
71 |
-
```
|
72 |
-
|
73 |
Attributes:
|
74 |
model_name (str): The name of the model to be used for retrieval.
|
75 |
"""
|
@@ -98,28 +49,55 @@ class CalPaliRetriever(weave.Model):
|
|
98 |
if metadata_dataset_name
|
99 |
else None
|
100 |
)
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
metadata_dataset_name: str,
|
107 |
-
data_artifact_name: str,
|
108 |
-
):
|
109 |
-
from byaldi import RAGMultiModalModel
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
docs_retrieval_model=docs_retrieval_model,
|
118 |
-
metadata_dataset_name=metadata_dataset_name,
|
119 |
-
data_artifact_dir=data_artifact_dir,
|
120 |
-
)
|
121 |
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
data_artifact_dir = get_wandb_artifact(data_artifact_name, "dataset")
|
124 |
self._docs_retrieval_model.index(
|
125 |
input_path=data_artifact_dir,
|
@@ -138,6 +116,76 @@ class CalPaliRetriever(weave.Model):
|
|
138 |
)
|
139 |
artifact.save()
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
@weave.op()
|
142 |
def predict(self, query: str, top_k: int = 3) -> list[dict[str, Any]]:
|
143 |
"""
|
@@ -147,6 +195,41 @@ class CalPaliRetriever(weave.Model):
|
|
147 |
This function uses the document retrieval model to search for the most relevant
|
148 |
documents based on the provided query. It returns a list of dictionaries, each
|
149 |
containing the document image, document ID, and the relevance score.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
Args:
|
152 |
query (str): The search query string.
|
|
|
21 |
It can be initialized with a pre-trained model or from a specified W&B artifact. The class
|
22 |
also provides methods to index new data and to predict/retrieve documents based on a query.
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
Attributes:
|
25 |
model_name (str): The name of the model to be used for retrieval.
|
26 |
"""
|
|
|
49 |
if metadata_dataset_name
|
50 |
else None
|
51 |
)
|
52 |
+
|
53 |
+
def index(self, data_artifact_name: str, weave_dataset_name: str, index_name: str):
|
54 |
+
"""
|
55 |
+
Indexes a dataset of documents and saves the index as a Weave artifact.
|
56 |
|
57 |
+
This method retrieves a dataset of documents from a Weave artifact using the provided
|
58 |
+
data artifact name. It then indexes the documents using the document retrieval model
|
59 |
+
and assigns the specified index name. The index is stored locally without storing the
|
60 |
+
collection with the index and overwrites any existing index with the same name.
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
If a Weave run is active, the method creates a new Weave artifact with the specified
|
63 |
+
index name and type "colpali-index". It adds the local index directory to the artifact
|
64 |
+
and saves it to Weave, including metadata with the provided Weave dataset name.
|
65 |
+
|
66 |
+
!!! example "Indexing Data"
|
67 |
+
First you need to install `Byaldi` library by Answer.ai.
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
```bash
|
70 |
+
uv pip install Byaldi>=0.0.5
|
71 |
+
```
|
72 |
+
|
73 |
+
Next, you can index the data by running the following code:
|
74 |
+
|
75 |
+
```python
|
76 |
+
import wandb
|
77 |
+
from medrag_multi_modal.retrieval import CalPaliRetriever
|
78 |
+
|
79 |
+
wandb.init(project="medrag-multi-modal", entity="ml-colabs", job_type="index")
|
80 |
+
retriever = CalPaliRetriever()
|
81 |
+
retriever.index(
|
82 |
+
data_artifact_name="ml-colabs/medrag-multi-modal/grays-anatomy-images:v1",
|
83 |
+
weave_dataset_name="grays-anatomy-images:v0",
|
84 |
+
index_name="grays-anatomy",
|
85 |
+
)
|
86 |
+
```
|
87 |
+
|
88 |
+
??? note "Optional Speedup using Flash Attention"
|
89 |
+
If you have a GPU with Flash Attention support, you can enable it for ColPali by simply
|
90 |
+
installing the `flash-attn` package.
|
91 |
+
|
92 |
+
```bash
|
93 |
+
uv pip install flash-attn --no-build-isolation
|
94 |
+
```
|
95 |
+
|
96 |
+
Args:
|
97 |
+
data_artifact_name (str): The name of the Weave artifact containing the dataset.
|
98 |
+
weave_dataset_name (str): The name of the Weave dataset to include in the artifact metadata.
|
99 |
+
index_name (str): The name to assign to the created index.
|
100 |
+
"""
|
101 |
data_artifact_dir = get_wandb_artifact(data_artifact_name, "dataset")
|
102 |
self._docs_retrieval_model.index(
|
103 |
input_path=data_artifact_dir,
|
|
|
116 |
)
|
117 |
artifact.save()
|
118 |
|
119 |
+
@classmethod
|
120 |
+
def from_wandb_artifact(
|
121 |
+
cls,
|
122 |
+
index_artifact_name: str,
|
123 |
+
metadata_dataset_name: str,
|
124 |
+
data_artifact_name: str,
|
125 |
+
):
|
126 |
+
"""
|
127 |
+
Creates an instance of the class from Weights & Biases (wandb) artifacts.
|
128 |
+
|
129 |
+
This method retrieves the necessary artifacts from wandb to initialize the
|
130 |
+
ColPaliRetriever. It fetches the index artifact directory and the data artifact
|
131 |
+
directory using the provided artifact names. It then loads the document retrieval
|
132 |
+
model from the index path within the index artifact directory. Finally, it returns
|
133 |
+
an instance of the class initialized with the retrieved document retrieval model,
|
134 |
+
metadata dataset name, and data artifact directory.
|
135 |
+
|
136 |
+
!!! example "Retrieving Documents"
|
137 |
+
First you need to install `Byaldi` library by Answer.ai.
|
138 |
+
|
139 |
+
```bash
|
140 |
+
uv pip install Byaldi>=0.0.5
|
141 |
+
```
|
142 |
+
|
143 |
+
Next, you can retrieve the documents by running the following code:
|
144 |
+
|
145 |
+
```python
|
146 |
+
import weave
|
147 |
+
|
148 |
+
import wandb
|
149 |
+
from medrag_multi_modal.retrieval import CalPaliRetriever
|
150 |
+
|
151 |
+
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
152 |
+
retriever = CalPaliRetriever.from_wandb_artifact(
|
153 |
+
index_artifact_name="ml-colabs/medrag-multi-modal/grays-anatomy:v0",
|
154 |
+
metadata_dataset_name="grays-anatomy-images:v0",
|
155 |
+
data_artifact_name="ml-colabs/medrag-multi-modal/grays-anatomy-images:v1",
|
156 |
+
)
|
157 |
+
```
|
158 |
+
|
159 |
+
??? note "Optional Speedup using Flash Attention"
|
160 |
+
If you have a GPU with Flash Attention support, you can enable it for ColPali by simply
|
161 |
+
installing the `flash-attn` package.
|
162 |
+
|
163 |
+
```bash
|
164 |
+
uv pip install flash-attn --no-build-isolation
|
165 |
+
```
|
166 |
+
|
167 |
+
Args:
|
168 |
+
index_artifact_name (str): The name of the wandb artifact containing the index.
|
169 |
+
metadata_dataset_name (str): The name of the dataset containing metadata.
|
170 |
+
data_artifact_name (str): The name of the wandb artifact containing the data.
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
An instance of the class initialized with the retrieved document retrieval model,
|
174 |
+
metadata dataset name, and data artifact directory.
|
175 |
+
"""
|
176 |
+
from byaldi import RAGMultiModalModel
|
177 |
+
|
178 |
+
index_artifact_dir = get_wandb_artifact(index_artifact_name, "colpali-index")
|
179 |
+
data_artifact_dir = get_wandb_artifact(data_artifact_name, "dataset")
|
180 |
+
docs_retrieval_model = RAGMultiModalModel.from_index(
|
181 |
+
index_path=os.path.join(index_artifact_dir, "index")
|
182 |
+
)
|
183 |
+
return cls(
|
184 |
+
docs_retrieval_model=docs_retrieval_model,
|
185 |
+
metadata_dataset_name=metadata_dataset_name,
|
186 |
+
data_artifact_dir=data_artifact_dir,
|
187 |
+
)
|
188 |
+
|
189 |
@weave.op()
|
190 |
def predict(self, query: str, top_k: int = 3) -> list[dict[str, Any]]:
|
191 |
"""
|
|
|
195 |
This function uses the document retrieval model to search for the most relevant
|
196 |
documents based on the provided query. It returns a list of dictionaries, each
|
197 |
containing the document image, document ID, and the relevance score.
|
198 |
+
|
199 |
+
!!! example "Retrieving Documents"
|
200 |
+
First you need to install `Byaldi` library by Answer.ai.
|
201 |
+
|
202 |
+
```bash
|
203 |
+
uv pip install Byaldi>=0.0.5
|
204 |
+
```
|
205 |
+
|
206 |
+
Next, you can retrieve the documents by running the following code:
|
207 |
+
|
208 |
+
```python
|
209 |
+
import weave
|
210 |
+
|
211 |
+
import wandb
|
212 |
+
from medrag_multi_modal.retrieval import CalPaliRetriever
|
213 |
+
|
214 |
+
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
215 |
+
retriever = CalPaliRetriever.from_wandb_artifact(
|
216 |
+
index_artifact_name="ml-colabs/medrag-multi-modal/grays-anatomy:v0",
|
217 |
+
metadata_dataset_name="grays-anatomy-images:v0",
|
218 |
+
data_artifact_name="ml-colabs/medrag-multi-modal/grays-anatomy-images:v1",
|
219 |
+
)
|
220 |
+
retriever.predict(
|
221 |
+
query="which neurotransmitters convey information between Merkel cells and sensory afferents?",
|
222 |
+
top_k=3,
|
223 |
+
)
|
224 |
+
```
|
225 |
+
|
226 |
+
??? note "Optional Speedup using Flash Attention"
|
227 |
+
If you have a GPU with Flash Attention support, you can enable it for ColPali by simply
|
228 |
+
installing the `flash-attn` package.
|
229 |
+
|
230 |
+
```bash
|
231 |
+
uv pip install flash-attn --no-build-isolation
|
232 |
+
```
|
233 |
|
234 |
Args:
|
235 |
query (str): The search query string.
|
medrag_multi_modal/retrieval/nv_embed_2.py
CHANGED
@@ -83,6 +83,14 @@ class NVEmbed2Retriever(weave.Model):
|
|
83 |
index_name="grays-anatomy-nvembed2",
|
84 |
)
|
85 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
Args:
|
88 |
chunk_dataset_name (str): The name of the Weave dataset containing the text chunks
|
@@ -136,6 +144,14 @@ class NVEmbed2Retriever(weave.Model):
|
|
136 |
index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-nvembed2:v0",
|
137 |
)
|
138 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
Args:
|
141 |
chunk_dataset_name (str): The name of the Weave dataset containing the text chunks.
|
@@ -242,6 +258,14 @@ class NVEmbed2Retriever(weave.Model):
|
|
242 |
)
|
243 |
retriever.predict(query="What are Ribosomes?")
|
244 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
Args:
|
247 |
query (str): The input query string to search for relevant chunks.
|
|
|
83 |
index_name="grays-anatomy-nvembed2",
|
84 |
)
|
85 |
```
|
86 |
+
|
87 |
+
??? note "Optional Speedup using Flash Attention"
|
88 |
+
If you have a GPU with Flash Attention support, you can enable it for NV-Embed-v2 by simply
|
89 |
+
installing the `flash-attn` package.
|
90 |
+
|
91 |
+
```bash
|
92 |
+
uv pip install flash-attn --no-build-isolation
|
93 |
+
```
|
94 |
|
95 |
Args:
|
96 |
chunk_dataset_name (str): The name of the Weave dataset containing the text chunks
|
|
|
144 |
index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-nvembed2:v0",
|
145 |
)
|
146 |
```
|
147 |
+
|
148 |
+
??? note "Optional Speedup using Flash Attention"
|
149 |
+
If you have a GPU with Flash Attention support, you can enable it for NV-Embed-v2 by simply
|
150 |
+
installing the `flash-attn` package.
|
151 |
+
|
152 |
+
```bash
|
153 |
+
uv pip install flash-attn --no-build-isolation
|
154 |
+
```
|
155 |
|
156 |
Args:
|
157 |
chunk_dataset_name (str): The name of the Weave dataset containing the text chunks.
|
|
|
258 |
)
|
259 |
retriever.predict(query="What are Ribosomes?")
|
260 |
```
|
261 |
+
|
262 |
+
??? note "Optional Speedup using Flash Attention"
|
263 |
+
If you have a GPU with Flash Attention support, you can enable it for NV-Embed-v2 by simply
|
264 |
+
installing the `flash-attn` package.
|
265 |
+
|
266 |
+
```bash
|
267 |
+
uv pip install flash-attn --no-build-isolation
|
268 |
+
```
|
269 |
|
270 |
Args:
|
271 |
query (str): The input query string to search for relevant chunks.
|