mratanusarkar commited on
Commit
3ee8144
·
1 Parent(s): 0dae114

add: documentations for MedQA Assistant App

Browse files
Files changed (2) hide show
  1. docs/app.md +57 -0
  2. mkdocs.yml +2 -0
docs/app.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MedQA Assistant App
2
+
3
+ The MedQA Assistant App is a Streamlit-based application designed to provide a chat interface for medical question answering. It leverages advanced language models (LLMs) and retrieval augmented generation (RAG) techniques to deliver accurate and informative responses to medical queries.
4
+
5
+ ## Features
6
+
7
+ - **Interactive Chat Interface**: Engage with the app through a user-friendly chat interface.
8
+ - **Configurable Settings**: Customize model selection and data sources via the sidebar.
9
+ - **Retrieval-Augmented Generation**: Ensures precise and contextually relevant responses.
10
+ - **Figure Annotation Capabilities**: Extracts and annotates figures from medical texts.
11
+
12
+ ## Usage
13
+
14
+ 1. **Launch the App**: Start the application using Streamlit:
15
+ ```bash
16
+ streamlit run app.py
17
+ ```
18
+ 2. **Configure Settings**: Adjust configuration settings in the sidebar to suit your needs.
19
+ 3. **Ask a Question**: Enter your medical question in the chat input field.
20
+ 4. **Receive a Response**: Get a detailed answer from the MedQA Assistant.
21
+
22
+ ## Configuration
23
+
24
+ The app allows users to customize various settings through the sidebar:
25
+
26
+ - **Project Name**: Specify the WandB project name.
27
+ - **Text Chunk WandB Dataset Name**: Define the dataset containing text chunks.
28
+ - **WandB Index Artifact Address**: Provide the address of the index artifact.
29
+ - **WandB Image Artifact Address**: Provide the address of the image artifact.
30
+ - **LLM Client Model Name**: Choose a language model for generating responses.
31
+ - **Figure Extraction Model Name**: Select a model for extracting figures from images.
32
+ - **Structured Output Model Name**: Choose a model for generating structured outputs.
33
+
34
+ ## Technical Details
35
+
36
+ The app is built using the following components:
37
+
38
+ - **Streamlit**: For the user interface.
39
+ - **Weave**: For project initialization and artifact management.
40
+ - **MedQAAssistant**: For processing queries and generating responses.
41
+ - **LLMClient**: For interacting with language models.
42
+ - **MedCPTRetriever**: For retrieving relevant text chunks.
43
+ - **FigureAnnotatorFromPageImage**: For annotating figures in medical texts.
44
+
45
+ ## Development and Deployment
46
+
47
+ - **Environment Setup**: Ensure all dependencies are installed as per the `pyproject.toml`.
48
+ - **Running the App**: Use Streamlit to run the app locally.
49
+ - **Deployment**: coming soon...
50
+
51
+ ## Additional Resources
52
+
53
+ For more detailed information on the components and their usage, refer to the following documentation sections:
54
+
55
+ - [MedQA Assistant](/assistant/medqa_assistant)
56
+ - [LLM Client](/assistant/llm_client)
57
+ - [Figure Annotation](/assistant/figure_annotation)
mkdocs.yml CHANGED
@@ -62,6 +62,8 @@ nav:
62
  - Setup:
63
  - Installation: 'installation/install.md'
64
  - Development: 'installation/development.md'
 
 
65
  - Document Loader:
66
  - Text Loader:
67
  - Base: 'document_loader/text_loader/base_text_loader.md'
 
62
  - Setup:
63
  - Installation: 'installation/install.md'
64
  - Development: 'installation/development.md'
65
+ - App:
66
+ - MedQA Assistant: 'app.md'
67
  - Document Loader:
68
  - Text Loader:
69
  - Base: 'document_loader/text_loader/base_text_loader.md'