Spaces:
Sleeping
Sleeping
Merge pull request #2 from soumik12345/feat/text-loading
Browse files
.gitignore
CHANGED
@@ -5,4 +5,5 @@ cursor_prompt.txt
|
|
5 |
**pycache**
|
6 |
.ruff_cache/
|
7 |
test.py
|
8 |
-
**.pdf
|
|
|
|
5 |
**pycache**
|
6 |
.ruff_cache/
|
7 |
test.py
|
8 |
+
**.pdf
|
9 |
+
images/
|
docs/document_loader/load_text.md
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
## Load text from PDF files
|
2 |
|
3 |
-
::: medrag_multi_modal.document_loader
|
|
|
1 |
## Load text from PDF files
|
2 |
|
3 |
+
::: medrag_multi_modal.document_loader.load_text
|
docs/document_loader/load_text_image.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
## Load text and images from PDF files
|
2 |
+
|
3 |
+
::: medrag_multi_modal.document_loader.load_text_image
|
medrag_multi_modal/document_loader/__init__.py
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
-
from .load_text import
|
|
|
2 |
|
3 |
-
__all__ = ["
|
|
|
1 |
+
from .load_text import TextLoader
|
2 |
+
from .load_text_image import TextImageLoader
|
3 |
|
4 |
+
__all__ = ["TextLoader", "TextImageLoader"]
|
medrag_multi_modal/document_loader/load_text.py
CHANGED
@@ -7,54 +7,33 @@ import PyPDF2
|
|
7 |
import rich
|
8 |
import weave
|
9 |
from firerequests import FireRequests
|
10 |
-
from pydantic import BaseModel
|
11 |
|
12 |
|
13 |
-
class
|
14 |
-
text: str
|
15 |
-
page_idx: int
|
16 |
-
document_name: str
|
17 |
-
file_path: str
|
18 |
-
file_url: str
|
19 |
-
|
20 |
-
|
21 |
-
async def load_text_from_pdf(
|
22 |
-
url: str,
|
23 |
-
document_name: str,
|
24 |
-
document_file_path: str,
|
25 |
-
start_page: Optional[int] = None,
|
26 |
-
end_page: Optional[int] = None,
|
27 |
-
weave_dataset_name: Optional[str] = None,
|
28 |
-
) -> list[Page]:
|
29 |
"""
|
30 |
-
|
31 |
-
processes the text into markdown format, and optionally publishes it to a Weave dataset.
|
32 |
|
33 |
-
This
|
34 |
-
|
35 |
-
|
36 |
-
the PDF and pymupdf4llm to convert pages to markdown. It processes pages concurrently using
|
37 |
-
`asyncio` for efficiency. If a weave_dataset_name is provided, the processed pages are published
|
38 |
-
to a Weave dataset.
|
39 |
|
40 |
-
!!! example "Example
|
41 |
```python
|
42 |
import asyncio
|
43 |
|
44 |
import weave
|
45 |
|
46 |
-
from medrag_multi_modal.document_loader import
|
47 |
|
48 |
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
49 |
url = "https://archive.org/download/GraysAnatomy41E2015PDF/Grays%20Anatomy-41%20E%20%282015%29%20%5BPDF%5D.pdf"
|
|
|
|
|
|
|
|
|
|
|
50 |
asyncio.run(
|
51 |
-
|
52 |
-
url=url,
|
53 |
-
document_name="Gray's Anatomy",
|
54 |
-
start_page=9,
|
55 |
-
end_page=15,
|
56 |
-
document_file_path="grays_anatomy.pdf",
|
57 |
-
)
|
58 |
)
|
59 |
```
|
60 |
|
@@ -62,61 +41,90 @@ async def load_text_from_pdf(
|
|
62 |
url (str): The URL of the PDF file to download if not present locally.
|
63 |
document_name (str): The name of the document for metadata purposes.
|
64 |
document_file_path (str): The local file path where the PDF is stored or will be downloaded.
|
65 |
-
start_page (Optional[int]): The starting page index (0-based) to process. Defaults to the first page.
|
66 |
-
end_page (Optional[int]): The ending page index (0-based) to process. Defaults to the last page.
|
67 |
-
weave_dataset_name (Optional[str]): The name of the Weave dataset to publish the pages to, if provided.
|
68 |
-
|
69 |
-
Returns:
|
70 |
-
list[Page]: A list of Page objects, each containing the text and metadata for a processed page.
|
71 |
-
|
72 |
-
Raises:
|
73 |
-
ValueError: If the specified start_page or end_page is out of bounds of the document's page count.
|
74 |
"""
|
75 |
-
if not os.path.exists(document_file_path):
|
76 |
-
FireRequests().download(url, filename=document_file_path)
|
77 |
-
with open(document_file_path, "rb") as file:
|
78 |
-
pdf_reader = PyPDF2.PdfReader(file)
|
79 |
-
page_count = len(pdf_reader.pages)
|
80 |
-
print(f"Page count: {page_count}")
|
81 |
-
if start_page:
|
82 |
-
if start_page > page_count:
|
83 |
-
raise ValueError(
|
84 |
-
f"Start page {start_page} is greater than the total page count {page_count}"
|
85 |
-
)
|
86 |
-
else:
|
87 |
-
start_page = 0
|
88 |
-
if end_page:
|
89 |
-
if end_page > page_count:
|
90 |
-
raise ValueError(
|
91 |
-
f"End page {end_page} is greater than the total page count {page_count}"
|
92 |
-
)
|
93 |
-
else:
|
94 |
-
end_page = page_count - 1
|
95 |
-
|
96 |
-
pages: list[Page] = []
|
97 |
-
processed_pages_counter: int = 1
|
98 |
-
total_pages = end_page - start_page
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
)
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
)
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import rich
|
8 |
import weave
|
9 |
from firerequests import FireRequests
|
|
|
10 |
|
11 |
|
12 |
+
class TextLoader:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
"""
|
14 |
+
A class for loading text from a PDF file, processing it into markdown, and optionally publishing it to a Weave dataset.
|
|
|
15 |
|
16 |
+
This class handles the downloading of a PDF file from a given URL if it does not already exist locally.
|
17 |
+
It uses PyPDF2 to read the PDF and pymupdf4llm to convert pages to markdown. The processed pages are stored in a list
|
18 |
+
of Page objects, which can be optionally published to a Weave dataset.
|
|
|
|
|
|
|
19 |
|
20 |
+
!!! example "Example Usage"
|
21 |
```python
|
22 |
import asyncio
|
23 |
|
24 |
import weave
|
25 |
|
26 |
+
from medrag_multi_modal.document_loader import TextLoader
|
27 |
|
28 |
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
29 |
url = "https://archive.org/download/GraysAnatomy41E2015PDF/Grays%20Anatomy-41%20E%20%282015%29%20%5BPDF%5D.pdf"
|
30 |
+
loader = TextLoader(
|
31 |
+
url=url,
|
32 |
+
document_name="Gray's Anatomy",
|
33 |
+
document_file_path="grays_anatomy.pdf",
|
34 |
+
)
|
35 |
asyncio.run(
|
36 |
+
loader.load_data(start_page=9, end_page=15, weave_dataset_name="grays-anatomy-text")
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
)
|
38 |
```
|
39 |
|
|
|
41 |
url (str): The URL of the PDF file to download if not present locally.
|
42 |
document_name (str): The name of the document for metadata purposes.
|
43 |
document_file_path (str): The local file path where the PDF is stored or will be downloaded.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
def __init__(self, url: str, document_name: str, document_file_path: str):
|
47 |
+
self.url = url
|
48 |
+
self.document_name = document_name
|
49 |
+
self.document_file_path = document_file_path
|
50 |
+
if not os.path.exists(self.document_file_path):
|
51 |
+
FireRequests().download(url, filename=self.document_file_path)
|
52 |
+
with open(self.document_file_path, "rb") as file:
|
53 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
54 |
+
self.page_count = len(pdf_reader.pages)
|
55 |
+
|
56 |
+
def get_page_indices(
|
57 |
+
self, start_page: Optional[int] = None, end_page: Optional[int] = None
|
58 |
+
):
|
59 |
+
if start_page:
|
60 |
+
if start_page > self.page_count:
|
61 |
+
raise ValueError(
|
62 |
+
f"Start page {start_page} is greater than the total page count {self.page_count}"
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
start_page = 0
|
66 |
+
if end_page:
|
67 |
+
if end_page > self.page_count:
|
68 |
+
raise ValueError(
|
69 |
+
f"End page {end_page} is greater than the total page count {self.page_count}"
|
70 |
+
)
|
71 |
+
else:
|
72 |
+
end_page = self.page_count - 1
|
73 |
+
return start_page, end_page
|
74 |
+
|
75 |
+
async def load_data(
|
76 |
+
self,
|
77 |
+
start_page: Optional[int] = None,
|
78 |
+
end_page: Optional[int] = None,
|
79 |
+
weave_dataset_name: Optional[str] = None,
|
80 |
+
):
|
81 |
+
"""
|
82 |
+
Asynchronously loads text from a PDF file specified by a URL or local file path,
|
83 |
+
processes the text into markdown format, and optionally publishes it to a Weave dataset.
|
84 |
+
|
85 |
+
This function downloads a PDF from a given URL if it does not already exist locally,
|
86 |
+
reads the specified range of pages, converts each page's content to markdown, and
|
87 |
+
returns a list of Page objects containing the text and metadata. It uses PyPDF2 to read
|
88 |
+
the PDF and pymupdf4llm to convert pages to markdown. It processes pages concurrently using
|
89 |
+
`asyncio` for efficiency. If a weave_dataset_name is provided, the processed pages are published
|
90 |
+
to a Weave dataset.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
start_page (Optional[int]): The starting page index (0-based) to process. Defaults to the first page.
|
94 |
+
end_page (Optional[int]): The ending page index (0-based) to process. Defaults to the last page.
|
95 |
+
weave_dataset_name (Optional[str]): The name of the Weave dataset to publish the pages to, if provided.
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
list[Page]: A list of Page objects, each containing the text and metadata for a processed page.
|
99 |
+
|
100 |
+
Raises:
|
101 |
+
ValueError: If the specified start_page or end_page is out of bounds of the document's page count.
|
102 |
+
"""
|
103 |
+
start_page, end_page = self.get_page_indices(start_page, end_page)
|
104 |
+
pages = []
|
105 |
+
processed_pages_counter: int = 1
|
106 |
+
total_pages = end_page - start_page
|
107 |
+
|
108 |
+
async def process_page(page_idx):
|
109 |
+
nonlocal processed_pages_counter
|
110 |
+
text = pymupdf4llm.to_markdown(
|
111 |
+
doc=self.document_file_path, pages=[page_idx], show_progress=False
|
112 |
)
|
113 |
+
pages.append(
|
114 |
+
{
|
115 |
+
"text": text,
|
116 |
+
"page_idx": page_idx,
|
117 |
+
"document_name": self.document_name,
|
118 |
+
"file_path": self.document_file_path,
|
119 |
+
"file_url": self.url,
|
120 |
+
}
|
121 |
+
)
|
122 |
+
rich.print(f"Processed pages {processed_pages_counter}/{total_pages}")
|
123 |
+
processed_pages_counter += 1
|
124 |
+
|
125 |
+
tasks = [process_page(page_idx) for page_idx in range(start_page, end_page)]
|
126 |
+
for task in asyncio.as_completed(tasks):
|
127 |
+
await task
|
128 |
+
if weave_dataset_name:
|
129 |
+
weave.publish(weave.Dataset(name=weave_dataset_name, rows=pages))
|
130 |
+
return pages
|
medrag_multi_modal/document_loader/load_text_image.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import os
|
3 |
+
from glob import glob
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import pymupdf4llm
|
7 |
+
import rich
|
8 |
+
import weave
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
from medrag_multi_modal.document_loader.load_text import TextLoader
|
12 |
+
|
13 |
+
|
14 |
+
class TextImageLoader(TextLoader):
|
15 |
+
"""
|
16 |
+
A class for loading and processing text and images from a document.
|
17 |
+
|
18 |
+
The TextImageLoader class extends the TextLoader class to provide
|
19 |
+
functionality for extracting both text and images from a document
|
20 |
+
specified by a URL, document name, and file path. It processes the
|
21 |
+
document asynchronously, allowing for efficient handling of large
|
22 |
+
documents.
|
23 |
+
|
24 |
+
!!! example "Example Usage"
|
25 |
+
```python
|
26 |
+
import asyncio
|
27 |
+
|
28 |
+
import weave
|
29 |
+
|
30 |
+
from medrag_multi_modal.document_loader import TextImageLoader
|
31 |
+
|
32 |
+
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
33 |
+
url = "https://archive.org/download/GraysAnatomy41E2015PDF/Grays%20Anatomy-41%20E%20%282015%29%20%5BPDF%5D.pdf"
|
34 |
+
loader = TextImageLoader(
|
35 |
+
url=url,
|
36 |
+
document_name="Gray's Anatomy",
|
37 |
+
document_file_path="grays_anatomy.pdf",
|
38 |
+
)
|
39 |
+
asyncio.run(
|
40 |
+
loader.load_data(
|
41 |
+
start_page=20,
|
42 |
+
end_page=25,
|
43 |
+
weave_dataset_name="grays-anatomy-text",
|
44 |
+
)
|
45 |
+
)
|
46 |
+
```
|
47 |
+
|
48 |
+
Args:
|
49 |
+
url (str): The URL of the document to be processed.
|
50 |
+
document_name (str): The name of the document.
|
51 |
+
document_file_path (str): The file path where the document is stored.
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self, url: str, document_name: str, document_file_path: str):
|
55 |
+
super().__init__(url, document_name, document_file_path)
|
56 |
+
|
57 |
+
async def load_data(
|
58 |
+
self,
|
59 |
+
start_page: Optional[int] = None,
|
60 |
+
end_page: Optional[int] = None,
|
61 |
+
weave_dataset_name: Optional[str] = None,
|
62 |
+
image_path: Optional[str] = "./images",
|
63 |
+
dpi: int = 300,
|
64 |
+
):
|
65 |
+
"""
|
66 |
+
Asynchronously loads and processes text and images from a specified range of pages
|
67 |
+
in a document. This function extracts text in markdown format and images in PNG
|
68 |
+
format from the document, storing them in a list of dictionaries, each representing
|
69 |
+
a page. Optionally, the processed data can be published to a Weave dataset.
|
70 |
+
|
71 |
+
The function first determines the page indices to process using the
|
72 |
+
`get_page_indices` method. It then defines an asynchronous inner function,
|
73 |
+
`process_page`, which handles the extraction of text and images for a single page.
|
74 |
+
The text is extracted using the `pymupdf4llm.to_markdown` function, and images are
|
75 |
+
retrieved from the specified image path. The processed data is appended to the
|
76 |
+
`pages` list.
|
77 |
+
|
78 |
+
The function creates a list of tasks for processing each page asynchronously and
|
79 |
+
awaits their completion. If a `weave_dataset_name` is provided, the processed data
|
80 |
+
is published to a Weave dataset. Finally, the function returns the list of processed
|
81 |
+
pages.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
start_page (Optional[int]): The starting page index for processing. If None,
|
85 |
+
defaults to the first page of the document.
|
86 |
+
end_page (Optional[int]): The ending page index for processing. If None,
|
87 |
+
defaults to the last page of the document.
|
88 |
+
weave_dataset_name (Optional[str]): The name of the Weave dataset to publish
|
89 |
+
the processed data to. If None, the data is not published.
|
90 |
+
image_path (Optional[str]): The directory path where extracted images are
|
91 |
+
stored. Defaults to "./images".
|
92 |
+
dpi (int): The resolution in dots per inch for image extraction. Defaults to 300.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
List[Dict]: A list of dictionaries, each containing the extracted text, page
|
96 |
+
index, document name, file path, file URL, and a list of images for each page
|
97 |
+
processed.
|
98 |
+
"""
|
99 |
+
start_page, end_page = self.get_page_indices(start_page, end_page)
|
100 |
+
pages = []
|
101 |
+
processed_pages_counter: int = 1
|
102 |
+
total_pages = end_page - start_page
|
103 |
+
|
104 |
+
async def process_page(page_idx):
|
105 |
+
nonlocal processed_pages_counter
|
106 |
+
text = pymupdf4llm.to_markdown(
|
107 |
+
doc=self.document_file_path,
|
108 |
+
pages=[page_idx],
|
109 |
+
show_progress=False,
|
110 |
+
write_images=True,
|
111 |
+
image_format="png",
|
112 |
+
dpi=dpi,
|
113 |
+
image_path=image_path,
|
114 |
+
)
|
115 |
+
image_paths = glob(
|
116 |
+
os.path.join(image_path, f"{self.document_file_path}-{page_idx}-*.png")
|
117 |
+
)
|
118 |
+
print(image_paths)
|
119 |
+
pages.append(
|
120 |
+
{
|
121 |
+
"text": text,
|
122 |
+
"page_idx": page_idx,
|
123 |
+
"document_name": self.document_name,
|
124 |
+
"file_path": self.document_file_path,
|
125 |
+
"file_url": self.url,
|
126 |
+
"images": [Image.open(image) for image in image_paths],
|
127 |
+
}
|
128 |
+
)
|
129 |
+
rich.print(f"Processed pages {processed_pages_counter}/{total_pages}")
|
130 |
+
processed_pages_counter += 1
|
131 |
+
|
132 |
+
tasks = [process_page(page_idx) for page_idx in range(start_page, end_page)]
|
133 |
+
for task in asyncio.as_completed(tasks):
|
134 |
+
await task
|
135 |
+
if weave_dataset_name:
|
136 |
+
weave.publish(weave.Dataset(name=weave_dataset_name, rows=pages))
|
137 |
+
return pages
|
mkdocs.yml
CHANGED
@@ -14,8 +14,6 @@ theme:
|
|
14 |
toggle:
|
15 |
icon: material/brightness-4
|
16 |
name: Switch to light mode
|
17 |
-
logo: assets/logomark.svg
|
18 |
-
favicon: assets/logomark.svg
|
19 |
features:
|
20 |
- content.code.annotate
|
21 |
- content.code.copy
|
@@ -63,5 +61,6 @@ nav:
|
|
63 |
- Home: 'index.md'
|
64 |
- Document Loader:
|
65 |
- Text Loader: 'document_loader/load_text.md'
|
|
|
66 |
|
67 |
repo_url: https://github.com/soumik12345/medrag-multi-modal
|
|
|
14 |
toggle:
|
15 |
icon: material/brightness-4
|
16 |
name: Switch to light mode
|
|
|
|
|
17 |
features:
|
18 |
- content.code.annotate
|
19 |
- content.code.copy
|
|
|
61 |
- Home: 'index.md'
|
62 |
- Document Loader:
|
63 |
- Text Loader: 'document_loader/load_text.md'
|
64 |
+
- Text and Image Loader: 'document_loader/load_text_image.md'
|
65 |
|
66 |
repo_url: https://github.com/soumik12345/medrag-multi-modal
|