import asyncio import os from typing import Optional import pymupdf4llm import PyPDF2 import rich import weave from firerequests import FireRequests class TextLoader: """ A class for loading text from a PDF file, processing it into markdown, and optionally publishing it to a Weave dataset. This class handles the downloading of a PDF file from a given URL if it does not already exist locally. It uses PyPDF2 to read the PDF and pymupdf4llm to convert pages to markdown. The processed pages are stored in a list of Page objects, which can be optionally published to a Weave dataset. !!! example "Example Usage" ```python import asyncio import weave from medrag_multi_modal.document_loader import TextLoader weave.init(project_name="ml-colabs/medrag-multi-modal") url = "https://archive.org/download/GraysAnatomy41E2015PDF/Grays%20Anatomy-41%20E%20%282015%29%20%5BPDF%5D.pdf" loader = TextLoader( url=url, document_name="Gray's Anatomy", document_file_path="grays_anatomy.pdf", ) asyncio.run( loader.load_data(start_page=9, end_page=15, weave_dataset_name="grays-anatomy-text") ) ``` Args: url (str): The URL of the PDF file to download if not present locally. document_name (str): The name of the document for metadata purposes. document_file_path (str): The local file path where the PDF is stored or will be downloaded. """ def __init__(self, url: str, document_name: str, document_file_path: str): self.url = url self.document_name = document_name self.document_file_path = document_file_path if not os.path.exists(self.document_file_path): FireRequests().download(url, filename=self.document_file_path) with open(self.document_file_path, "rb") as file: pdf_reader = PyPDF2.PdfReader(file) self.page_count = len(pdf_reader.pages) def get_page_indices( self, start_page: Optional[int] = None, end_page: Optional[int] = None ): if start_page: if start_page > self.page_count: raise ValueError( f"Start page {start_page} is greater than the total page count {self.page_count}" ) else: start_page = 0 if end_page: if end_page > self.page_count: raise ValueError( f"End page {end_page} is greater than the total page count {self.page_count}" ) else: end_page = self.page_count - 1 return start_page, end_page async def load_data( self, start_page: Optional[int] = None, end_page: Optional[int] = None, weave_dataset_name: Optional[str] = None, ): """ Asynchronously loads text from a PDF file specified by a URL or local file path, processes the text into markdown format, and optionally publishes it to a Weave dataset. This function downloads a PDF from a given URL if it does not already exist locally, reads the specified range of pages, converts each page's content to markdown, and returns a list of Page objects containing the text and metadata. It uses PyPDF2 to read the PDF and pymupdf4llm to convert pages to markdown. It processes pages concurrently using `asyncio` for efficiency. If a weave_dataset_name is provided, the processed pages are published to a Weave dataset. Args: start_page (Optional[int]): The starting page index (0-based) to process. Defaults to the first page. end_page (Optional[int]): The ending page index (0-based) to process. Defaults to the last page. weave_dataset_name (Optional[str]): The name of the Weave dataset to publish the pages to, if provided. Returns: list[Page]: A list of Page objects, each containing the text and metadata for a processed page. Raises: ValueError: If the specified start_page or end_page is out of bounds of the document's page count. """ start_page, end_page = self.get_page_indices(start_page, end_page) pages = [] processed_pages_counter: int = 1 total_pages = end_page - start_page async def process_page(page_idx): nonlocal processed_pages_counter text = pymupdf4llm.to_markdown( doc=self.document_file_path, pages=[page_idx], show_progress=False ) pages.append( { "text": text, "page_idx": page_idx, "document_name": self.document_name, "file_path": self.document_file_path, "file_url": self.url, } ) rich.print(f"Processed pages {processed_pages_counter}/{total_pages}") processed_pages_counter += 1 tasks = [process_page(page_idx) for page_idx in range(start_page, end_page)] for task in asyncio.as_completed(tasks): await task if weave_dataset_name: weave.publish(weave.Dataset(name=weave_dataset_name, rows=pages)) return pages