import asyncio import os from typing import Optional import pymupdf4llm import PyPDF2 import rich import weave from firerequests import FireRequests from pydantic import BaseModel class Page(BaseModel): text: str page_idx: int document_name: str file_path: str file_url: str async def load_text_from_pdf( url: str, document_name: str, document_file_path: str, start_page: Optional[int] = None, end_page: Optional[int] = None, weave_dataset_name: Optional[str] = None, ) -> list[Page]: """ Asynchronously loads text from a PDF file specified by a URL or local file path, processes the text into markdown format, and optionally publishes it to a Weave dataset. This function downloads a PDF from a given URL if it does not already exist locally, reads the specified range of pages, converts each page's content to markdown, and returns a list of Page objects containing the text and metadata. It uses PyPDF2 to read the PDF and pymupdf4llm to convert pages to markdown. It processes pages concurrently using `asyncio` for efficiency. If a weave_dataset_name is provided, the processed pages are published to a Weave dataset. !!! example "Example usage" ```python import asyncio import weave from medrag_multi_modal.document_loader import load_text_from_pdf weave.init(project_name="ml-colabs/medrag-multi-modal") url = "https://archive.org/download/GraysAnatomy41E2015PDF/Grays%20Anatomy-41%20E%20%282015%29%20%5BPDF%5D.pdf" asyncio.run( load_text_from_pdf( url=url, document_name="Gray's Anatomy", start_page=9, end_page=15, document_file_path="grays_anatomy.pdf", ) ) ``` Args: url (str): The URL of the PDF file to download if not present locally. document_name (str): The name of the document for metadata purposes. document_file_path (str): The local file path where the PDF is stored or will be downloaded. start_page (Optional[int]): The starting page index (0-based) to process. Defaults to the first page. end_page (Optional[int]): The ending page index (0-based) to process. Defaults to the last page. weave_dataset_name (Optional[str]): The name of the Weave dataset to publish the pages to, if provided. Returns: list[Page]: A list of Page objects, each containing the text and metadata for a processed page. Raises: ValueError: If the specified start_page or end_page is out of bounds of the document's page count. """ if not os.path.exists(document_file_path): FireRequests().download(url, filename=document_file_path) with open(document_file_path, "rb") as file: pdf_reader = PyPDF2.PdfReader(file) page_count = len(pdf_reader.pages) print(f"Page count: {page_count}") if start_page: if start_page > page_count: raise ValueError( f"Start page {start_page} is greater than the total page count {page_count}" ) else: start_page = 0 if end_page: if end_page > page_count: raise ValueError( f"End page {end_page} is greater than the total page count {page_count}" ) else: end_page = page_count - 1 pages: list[Page] = [] processed_pages_counter: int = 1 total_pages = end_page - start_page async def process_page(page_idx): nonlocal processed_pages_counter text = pymupdf4llm.to_markdown( doc=document_file_path, pages=[page_idx], show_progress=False ) pages.append( Page( text=text, page_idx=page_idx, document_name=document_name, file_path=document_file_path, file_url=url, ) ) rich.print(f"Processed pages {processed_pages_counter}/{total_pages}") processed_pages_counter += 1 tasks = [process_page(page_idx) for page_idx in range(start_page, end_page)] for task in asyncio.as_completed(tasks): await task if weave_dataset_name: weave.publish(weave.Dataset(name=weave_dataset_name, rows=pages)) return pages