AISupervisor / app.py
geethareddy's picture
Update app.py
d25340b verified
raw
history blame
5.26 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer
from contextlib import asynccontextmanager
import json
import logging
import os
import asyncio
# Set up logging to stdout only
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
handlers=[
logging.StreamHandler() # Log to stdout
]
)
logger = logging.getLogger(__name__)
# Global variables for model and tokenizer
model = None
tokenizer = None
model_load_status = "not_loaded"
# Define model path and fallback
model_path = "/app/fine-tuned-construction-llm"
fallback_model = "distilgpt2"
# Asynchronous function to load model in the background
async def load_model_background():
global model, tokenizer, model_load_status
try:
if os.path.isdir(model_path):
logger.info(f"Loading local model from {model_path}")
model = AutoModelForCausalLM.from_pretrained(model_path, local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True)
model_load_status = "local_model_loaded"
else:
logger.info(f"Model directory not found: {model_path}. Using pre-trained model: {fallback_model}")
model = AutoModelForCausalLM.from_pretrained(fallback_model)
tokenizer = AutoTokenizer.from_pretrained(fallback_model)
model_load_status = "fallback_model_loaded"
logger.info("Model and tokenizer loaded successfully")
except Exception as e:
logger.error(f"Failed to load model or tokenizer: {str(e)}")
model_load_status = f"failed: {str(e)}"
# Lifespan event handler to manage startup and shutdown
@asynccontextmanager
async def lifespan(app: FastAPI):
logger.debug("FastAPI application starting")
# Start the background task for model loading
asyncio.create_task(load_model_background())
yield
logger.debug("FastAPI application shutting down")
# Initialize FastAPI app with lifespan handler
app = FastAPI(lifespan=lifespan)
# Define input model for validation
class CoachingInput(BaseModel):
role: str
project_id: str
milestones: str
reflection_log: str
@app.get("/")
async def root():
logger.debug("Root endpoint accessed")
return {"message": "Supervisor AI Coach is running"}
@app.get("/health")
async def health_check():
logger.debug("Health endpoint accessed")
return {
"status": "healthy" if model_load_status in ["local_model_loaded", "fallback_model_loaded"] else "starting",
"model_load_status": model_load_status
}
@app.post("/generate_coaching")
async def generate_coaching(data: CoachingInput):
logger.debug("Generate coaching endpoint accessed")
if model is None or tokenizer is None:
logger.warning("Model or tokenizer not loaded")
# Return a static response if the model isn't loaded yet
response_json = {
"checklist": ["Inspect safety equipment", "Review milestone progress"],
"tips": ["Prioritize team communication", "Check weather updates"],
"quote": "Every step forward counts!"
}
return response_json
try:
# Prepare input text
input_text = (
f"Role: {data.role}, Project: {data.project_id}, "
f"Milestones: {data.milestones}, Reflection: {data.reflection_log}"
)
# Tokenize input
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
# Generate output
outputs = model.generate(
inputs["input_ids"],
max_length=200,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
temperature=0.7
)
# Decode and parse response
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Since distilgpt2 may not output JSON, parse the response manually or use fallback
if not response_text.startswith("{"):
checklist = ["Inspect safety equipment", "Review milestone progress"]
tips = ["Prioritize team communication", "Check weather updates"]
quote = "Every step forward counts!"
response_json = {"checklist": checklist, "tips": tips, "quote": quote}
logger.warning("Model output is not JSON, using default response")
else:
try:
response_json = json.loads(response_text)
except json.JSONDecodeError:
response_json = {
"checklist": ["Inspect safety equipment", "Review milestone progress"],
"tips": ["Prioritize team communication", "Check weather updates"],
"quote": "Every step forward counts!"
}
logger.warning("Failed to parse model output as JSON, using default response")
return response_json
except Exception as e:
logger.error(f"Error generating coaching response: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")