Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException, BackgroundTasks | |
from pydantic import BaseModel | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import json | |
import logging | |
import os | |
# Set up logging to stdout only | |
logging.basicConfig( | |
level=logging.DEBUG, | |
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", | |
handlers=[ | |
logging.StreamHandler() # Log to stdout | |
] | |
) | |
logger = logging.getLogger(__name__) | |
# Initialize FastAPI app | |
app = FastAPI() | |
# Define input model for validation | |
class CoachingInput(BaseModel): | |
role: str | |
project_id: str | |
milestones: str | |
reflection_log: str | |
# Global variables for model and tokenizer | |
model = None | |
tokenizer = None | |
model_load_status = "not_loaded" | |
# Define model path and fallback | |
model_path = "/app/fine-tuned-construction-llm" | |
fallback_model = "distilgpt2" | |
# Asynchronous function to load model in the background | |
async def load_model_background(): | |
global model, tokenizer, model_load_status | |
try: | |
if os.path.isdir(model_path): | |
logger.info(f"Loading local model from {model_path}") | |
model = AutoModelForCausalLM.from_pretrained(model_path, local_files_only=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True) | |
model_load_status = "local_model_loaded" | |
else: | |
logger.info(f"Model directory not found: {model_path}. Using pre-trained model: {fallback_model}") | |
model = AutoModelForCausalLM.from_pretrained(fallback_model) | |
tokenizer = AutoTokenizer.from_pretrained(fallback_model) | |
model_load_status = "fallback_model_loaded" | |
logger.info("Model and tokenizer loaded successfully") | |
except Exception as e: | |
logger.error(f"Failed to load model or tokenizer: {str(e)}") | |
model_load_status = f"failed: {str(e)}" | |
# Startup event to initiate model loading in the background | |
async def startup_event(background_tasks: BackgroundTasks): | |
logger.debug("FastAPI application started") | |
background_tasks.add_task(load_model_background) | |
async def root(): | |
logger.debug("Root endpoint accessed") | |
return {"message": "Supervisor AI Coach is running"} | |
async def health_check(): | |
logger.debug("Health endpoint accessed") | |
return { | |
"status": "healthy" if model_load_status in ["local_model_loaded", "fallback_model_loaded"] else "starting", | |
"model_load_status": model_load_status | |
} | |
async def generate_coaching(data: CoachingInput): | |
logger.debug("Generate coaching endpoint accessed") | |
if model is None or tokenizer is None: | |
logger.warning("Model or tokenizer not loaded") | |
# Return a static response if the model isn't loaded yet | |
response_json = { | |
"checklist": ["Inspect safety equipment", "Review milestone progress"], | |
"tips": ["Prioritize team communication", "Check weather updates"], | |
"quote": "Every step forward counts!" | |
} | |
return response_json | |
try: | |
# Prepare input text | |
input_text = ( | |
f"Role: {data.role}, Project: {data.project_id}, " | |
f"Milestones: {data.milestones}, Reflection: {data.reflection_log}" | |
) | |
# Tokenize input | |
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True) | |
# Generate output | |
outputs = model.generate( | |
inputs["input_ids"], | |
max_length=200, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
do_sample=True, | |
temperature=0.7 | |
) | |
# Decode and parse response | |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Since distilgpt2 may not output JSON, parse the response manually or use fallback | |
if not response_text.startswith("{"): | |
checklist = ["Inspect safety equipment", "Review milestone progress"] | |
tips = ["Prioritize team communication", "Check weather updates"] | |
quote = "Every step forward counts!" | |
response_json = {"checklist": checklist, "tips": tips, "quote": quote} | |
logger.warning("Model output is not JSON, using default response") | |
else: | |
try: | |
response_json = json.loads(response_text) | |
except json.JSONDecodeError: | |
response_json = { | |
"checklist": ["Inspect safety equipment", "Review milestone progress"], | |
"tips": ["Prioritize team communication", "Check weather updates"], | |
"quote": "Every step forward counts!" | |
} | |
logger.warning("Failed to parse model output as JSON, using default response") | |
return response_json | |
except Exception as e: | |
logger.error(f"Error generating coaching response: {str(e)}") | |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") |