Spaces:
Sleeping
Sleeping
import json | |
import logging | |
import os | |
import threading | |
import time | |
from flask import Flask, request, jsonify | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Set up logging to stdout only | |
logging.basicConfig( | |
level=logging.DEBUG, | |
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", | |
handlers=[ | |
logging.StreamHandler() # Log to stdout | |
] | |
) | |
logger = logging.getLogger(__name__) | |
# Initialize Flask app | |
app = Flask(__name__) | |
# Global variables for model and tokenizer | |
model = None | |
tokenizer = None | |
model_load_status = "not_loaded" | |
# Define model path and fallback | |
model_path = "/app/fine-tuned-construction-llm" | |
fallback_model = "distilgpt2" | |
# Function to load model in the background | |
def load_model_background(): | |
global model, tokenizer, model_load_status | |
try: | |
if os.path.isdir(model_path): | |
logger.info(f"Loading local model from {model_path}") | |
model = AutoModelForCausalLM.from_pretrained(model_path, local_files_only=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True) | |
model_load_status = "local_model_loaded" | |
else: | |
logger.info(f"Model directory not found: {model_path}. Using pre-trained model: {fallback_model}") | |
model = AutoModelForCausalLM.from_pretrained(fallback_model) | |
tokenizer = AutoTokenizer.from_pretrained(fallback_model) | |
model_load_status = "fallback_model_loaded" | |
logger.info("Model and tokenizer loaded successfully") | |
except Exception as e: | |
logger.error(f"Failed to load model or tokenizer: {str(e)}") | |
model_load_status = f"failed: {str(e)}" | |
# Start model loading in a background thread | |
def start_background_tasks(): | |
logger.debug("Starting background tasks") | |
thread = threading.Thread(target=load_model_background) | |
thread.daemon = True | |
thread.start() | |
# Utility function to wait for model loading with a timeout | |
def wait_for_model(timeout=60): | |
start_time = time.time() | |
while time.time() - start_time < timeout: | |
if model_load_status in ["local_model_loaded", "fallback_model_loaded"]: | |
return True | |
elif "failed" in model_load_status: | |
return False | |
time.sleep(1) | |
return False | |
# Utility function to parse raw text into structured JSON response | |
def parse_raw_text_to_json(raw_text): | |
lines = raw_text.strip().split("\n") | |
checklist = [] | |
tips = [] | |
quote = "Every step forward counts!" | |
checklist_section = False | |
tips_section = False | |
for line in lines: | |
line = line.strip() | |
if not line: | |
continue | |
if line.lower().startswith("checklist:"): | |
checklist_section = True | |
tips_section = False | |
continue | |
elif line.lower().startswith("tips:"): | |
checklist_section = False | |
tips_section = True | |
continue | |
elif line.lower().startswith("quote:"): | |
checklist_section = False | |
tips_section = False | |
quote = line[6:].strip() or quote | |
continue | |
if checklist_section and line.startswith("- "): | |
checklist.append(line[2:].strip()) | |
elif tips_section and line.startswith("* "): | |
tips.append(line[2:].strip()) | |
elif not checklist and not tips and line: | |
# If no sections are defined, try to infer structure | |
if line.startswith("- "): | |
checklist.append(line[2:].strip()) | |
elif line.startswith("* "): | |
tips.append(line[2:].strip()) | |
else: | |
quote = line | |
# Fallback if parsing fails | |
if not checklist: | |
checklist = ["Inspect safety equipment", "Review milestone progress"] | |
if not tips: | |
tips = ["Prioritize team communication", "Check weather updates"] | |
return { | |
"checklist": checklist, | |
"tips": tips, | |
"quote": quote | |
} | |
def root(): | |
logger.debug("Root endpoint accessed") | |
return jsonify({"message": "Supervisor AI Coach is running"}) | |
def health_check(): | |
logger.debug("Health endpoint accessed") | |
return jsonify({ | |
"status": "healthy" if model_load_status in ["local_model_loaded", "fallback_model_loaded"] else "starting", | |
"model_load_status": model_load_status | |
}) | |
def debug(): | |
logger.debug("Debug endpoint accessed") | |
data = request.get_json() | |
if not data: | |
return jsonify({"error": "Invalid request: JSON data required"}), 400 | |
required_fields = ["role", "project_id", "milestones", "reflection_log"] | |
missing_fields = [field for field in required_fields if field not in data] | |
if missing_fields: | |
return jsonify({"error": f"Missing required fields: {missing_fields}"}), 400 | |
input_text = ( | |
f"Role: {data['role']}, Project: {data['project_id']}, " | |
f"Milestones: {data['milestones']}, Reflection: {data['reflection_log']}" | |
) | |
return jsonify({ | |
"model_load_status": model_load_status, | |
"input_text": input_text, | |
"model_ready": model is not None and tokenizer is not None | |
}) | |
def generate_coaching(): | |
logger.debug("Generate coaching endpoint accessed") | |
# Manual validation of request data | |
data = request.get_json() | |
if not data: | |
logger.error("Invalid request: No JSON data provided") | |
return jsonify({"error": "Invalid request: JSON data required"}), 400 | |
required_fields = ["role", "project_id", "milestones", "reflection_log"] | |
missing_fields = [field for field in required_fields if field not in data] | |
if missing_fields: | |
logger.error(f"Missing required fields: {missing_fields}") | |
return jsonify({"error": f"Missing required fields: {missing_fields}"}), 400 | |
# Wait for the model to load (up to 60 seconds) | |
if not wait_for_model(timeout=60): | |
logger.warning("Model failed to load within timeout") | |
return jsonify({ | |
"checklist": ["Inspect safety equipment", "Review milestone progress"], | |
"tips": ["Prioritize team communication", "Check weather updates"], | |
"quote": "Every step forward counts!" | |
}) | |
try: | |
# Prepare input text with a structured prompt to encourage formatted output | |
input_text = ( | |
f"Role: {data['role']}, Project: {data['project_id']}, " | |
f"Milestones: {data['milestones']}, Reflection: {data['reflection_log']}\n\n" | |
"Generate a coaching response in the following format:\n" | |
"Checklist:\n- <item1>\n- <item2>\n" | |
"Tips:\n* <tip1>\n* <tip2>\n" | |
"Quote: <motivational quote>" | |
) | |
# Tokenize input | |
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True) | |
# Generate output | |
outputs = model.generate( | |
inputs["input_ids"], | |
max_length=200, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
do_sample=True, | |
temperature=0.7 | |
) | |
# Decode response | |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
logger.debug(f"Raw model output: {response_text}") | |
# Try parsing as JSON first | |
try: | |
response_json = json.loads(response_text) | |
# Validate required fields in response | |
if not all(key in response_json for key in ["checklist", "tips", "quote"]): | |
raise ValueError("Missing required fields in model output") | |
except (json.JSONDecodeError, ValueError): | |
# If not JSON or invalid JSON, parse raw text | |
logger.warning("Model output is not valid JSON, parsing raw text") | |
response_json = parse_raw_text_to_json(response_text) | |
return jsonify(response_json) | |
except Exception as e: | |
logger.error(f"Error generating coaching response: {str(e)}") | |
return jsonify({"error": f"Internal server error: {str(e)}"}), 500 | |
if __name__ == "__main__": | |
# Start background tasks before the app runs | |
start_background_tasks() | |
# Run Flask app with waitress for production-ready WSGI server | |
from waitress import serve | |
logger.debug("Starting Flask app with Waitress") | |
serve(app, host="0.0.0.0", port=7860) |