Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ import os
|
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
|
|
12 |
app = FastAPI()
|
13 |
|
14 |
# Define input model for validation
|
@@ -18,27 +19,52 @@ class CoachingInput(BaseModel):
|
|
18 |
milestones: str
|
19 |
reflection_log: str
|
20 |
|
21 |
-
#
|
|
|
|
|
|
|
|
|
|
|
22 |
model_path = "/app/fine-tuned-construction-llm"
|
23 |
-
fallback_model = "
|
24 |
|
25 |
-
# Load model and tokenizer
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
@app.post("/generate_coaching")
|
41 |
async def generate_coaching(data: CoachingInput):
|
|
|
|
|
|
|
|
|
42 |
try:
|
43 |
# Prepare input text
|
44 |
input_text = (
|
@@ -62,8 +88,7 @@ async def generate_coaching(data: CoachingInput):
|
|
62 |
# Decode and parse response
|
63 |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
64 |
|
65 |
-
# Since
|
66 |
-
# This is a simplified parsing logic; adjust based on your model's output format
|
67 |
if not response_text.startswith("{"):
|
68 |
checklist = ["Inspect safety equipment", "Review milestone progress"]
|
69 |
tips = ["Prioritize team communication", "Check weather updates"]
|
@@ -85,8 +110,4 @@ async def generate_coaching(data: CoachingInput):
|
|
85 |
|
86 |
except Exception as e:
|
87 |
logger.error(f"Error generating coaching response: {str(e)}")
|
88 |
-
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
89 |
-
|
90 |
-
@app.get("/health")
|
91 |
-
async def health_check():
|
92 |
-
return {"status": "healthy"}
|
|
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
+
# Initialize FastAPI app
|
13 |
app = FastAPI()
|
14 |
|
15 |
# Define input model for validation
|
|
|
19 |
milestones: str
|
20 |
reflection_log: str
|
21 |
|
22 |
+
# Global variables for model and tokenizer
|
23 |
+
model = None
|
24 |
+
tokenizer = None
|
25 |
+
model_load_status = "not_loaded"
|
26 |
+
|
27 |
+
# Define model path and fallback
|
28 |
model_path = "/app/fine-tuned-construction-llm"
|
29 |
+
fallback_model = "distilgpt2" # Smaller model for faster loading
|
30 |
|
31 |
+
# Load model and tokenizer at startup
|
32 |
+
def load_model():
|
33 |
+
global model, tokenizer, model_load_status
|
34 |
+
try:
|
35 |
+
if os.path.isdir(model_path):
|
36 |
+
logger.info(f"Loading local model from {model_path}")
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, local_files_only=True)
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True)
|
39 |
+
model_load_status = "local_model_loaded"
|
40 |
+
else:
|
41 |
+
logger.warning(f"Model directory not found: {model_path}. Falling back to pre-trained model: {fallback_model}")
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(fallback_model)
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(fallback_model)
|
44 |
+
model_load_status = "fallback_model_loaded"
|
45 |
+
logger.info("Model and tokenizer loaded successfully")
|
46 |
+
except Exception as e:
|
47 |
+
logger.error(f"Failed to load model or tokenizer: {str(e)}")
|
48 |
+
model_load_status = f"failed: {str(e)}"
|
49 |
+
# Do not raise an exception; allow the app to start
|
50 |
+
|
51 |
+
# Load model on startup
|
52 |
+
load_model()
|
53 |
+
|
54 |
+
@app.on_event("startup")
|
55 |
+
async def startup_event():
|
56 |
+
logger.info("FastAPI application started")
|
57 |
+
|
58 |
+
@app.get("/health")
|
59 |
+
async def health_check():
|
60 |
+
return {"status": "healthy", "model_load_status": model_load_status}
|
61 |
|
62 |
@app.post("/generate_coaching")
|
63 |
async def generate_coaching(data: CoachingInput):
|
64 |
+
if model is None or tokenizer is None:
|
65 |
+
logger.error("Model or tokenizer not loaded")
|
66 |
+
raise HTTPException(status_code=503, detail="Model not loaded. Please check server logs.")
|
67 |
+
|
68 |
try:
|
69 |
# Prepare input text
|
70 |
input_text = (
|
|
|
88 |
# Decode and parse response
|
89 |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
90 |
|
91 |
+
# Since distilgpt2 may not output JSON, parse the response manually or use fallback
|
|
|
92 |
if not response_text.startswith("{"):
|
93 |
checklist = ["Inspect safety equipment", "Review milestone progress"]
|
94 |
tips = ["Prioritize team communication", "Check weather updates"]
|
|
|
110 |
|
111 |
except Exception as e:
|
112 |
logger.error(f"Error generating coaching response: {str(e)}")
|
113 |
+
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
|
|
|
|
|
|
|