Spaces:
Sleeping
Sleeping
File size: 6,402 Bytes
e4ced37 d021ecf 9e6531c d021ecf c1aacae e4ced37 39d22d4 9e6531c 39d22d4 9e6531c 39d22d4 9e6531c c1aacae 9e6531c e4ced37 159fa92 e4ced37 c1aacae e4ced37 9e6531c e4ced37 c1aacae e4ced37 c1aacae e4ced37 c1aacae e4ced37 9e6531c e4ced37 9e6531c c1aacae 9e6531c c1aacae 9e6531c c1aacae 9e6531c c1aacae e4ced37 c1aacae e4ced37 159fa92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from joblib import Memory
import datetime
# Initialize cache
cache_dir = "./cache"
memory = Memory(cache_dir, verbose=0)
# Load pre-trained model and tokenizer (allow online download)
model_name = "distilgpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Set pad_token_id to eos_token_id to avoid warnings
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.eos_token_id
# Define a prompt template (structured format)
PROMPT_TEMPLATE = """You are an AI coach for construction supervisors. Based on the following inputs, generate a daily checklist, focus suggestions, and a motivational quote. Format your response with clear labels as follows:
Checklist:
- Item 1
- Item 2
Suggestions:
- Suggestion 1
- Suggestion 2
Quote:
- Your motivational quote here
Now, generate the checklist, suggestions, and quote for the following inputs:
Inputs:
Role: {role}
Project: {project_id}
Milestones: {milestones}
Reflection: {reflection}
"""
# Cache reset check
last_reset = datetime.date.today()
def reset_cache_if_new_day():
global last_reset
today = datetime.date.today()
if today > last_reset:
memory.clear()
last_reset = today
# Cached generation function with improved parsing and context-aware fallbacks
@memory.cache
def generate_outputs(role, project_id, milestones, reflection):
reset_cache_if_new_day()
# Validate inputs
if not all([role, project_id, milestones, reflection]):
return "Error: All fields are required.", "", ""
# Create prompt
prompt = PROMPT_TEMPLATE.format(
role=role,
project_id=project_id,
milestones=milestones,
reflection=reflection
)
# Tokenize with attention_mask
inputs = tokenizer(
prompt,
return_tensors="pt",
max_length=512,
truncation=True,
padding=True,
return_attention_mask=True
)
# Generate with attention_mask
outputs = model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=1500,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
top_p=0.9,
temperature=0.8,
pad_token_id=tokenizer.eos_token_id
)
# Decode generated text
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Parse the output using labels
checklist = "No checklist generated."
suggestions = "No suggestions generated."
quote = "No quote generated."
# Look for sections using labels
if "Checklist:" in generated_text:
checklist_start = generated_text.find("Checklist:") + len("Checklist:")
suggestions_start = generated_text.find("Suggestions:")
if suggestions_start == -1:
suggestions_start = len(generated_text)
checklist = generated_text[checklist_start:suggestions_start].strip()
if not checklist:
checklist = "No checklist generated."
if "Suggestions:" in generated_text:
suggestions_start = generated_text.find("Suggestions:") + len("Suggestions:")
quote_start = generated_text.find("Quote:")
if quote_start == -1:
quote_start = len(generated_text)
suggestions = generated_text[suggestions_start:quote_start].strip()
if not suggestions:
suggestions = "No suggestions generated."
if "Quote:" in generated_text:
quote_start = generated_text.find("Quote:") + len("Quote:")
quote = generated_text[quote_start:].strip()
if not quote:
quote = "No quote generated."
# Context-aware fallbacks based on inputs
if checklist == "No checklist generated.":
checklist_items = []
milestone_list = [m.strip() for m in milestones.split(",")]
for i, milestone in enumerate(milestone_list, 1):
checklist_items.append(f"- {milestone} by {8 + i*2} AM.")
checklist_items.append("- Check equipment status before end of day.")
checklist = "\n".join(checklist_items)
if suggestions == "No suggestions generated.":
suggestions_items = []
if "equipment issues" in reflection.lower():
suggestions_items.append("- Schedule equipment maintenance to avoid future delays.")
if "suppliers" in reflection.lower():
suggestions_items.append("- Set up a morning call with suppliers to confirm timelines.")
suggestions_items.append("- Brief the team on tomorrow’s goals during the daily huddle.")
suggestions = "\n".join(suggestions_items if suggestions_items else ["- Coordinate with the team.", "- Plan for contingencies."])
if quote == "No quote generated.":
quote = "- Keep building—every step forward counts!"
return checklist, suggestions, quote
# Gradio interface
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("# Construction Supervisor AI Coach")
gr.Markdown("Enter details to generate a daily checklist, focus suggestions, and a motivational quote.")
with gr.Row():
role = gr.Dropdown(choices=["Supervisor", "Foreman", "Project Manager"], label="Role")
project_id = gr.Textbox(label="Project ID")
milestones = gr.Textbox(label="Milestones (comma-separated KPIs)")
reflection = gr.Textbox(label="Reflection Log", lines=5)
with gr.Row():
submit = gr.Button("Generate")
clear = gr.Button("Clear")
checklist_output = gr.Textbox(label="Daily Checklist")
suggestions_output = gr.Textbox(label="Focus Suggestions")
quote_output = gr.Textbox(label="Motivational Quote")
submit.click(
fn=generate_outputs,
inputs=[role, project_id, milestones, reflection],
outputs=[checklist_output, suggestions_output, quote_output]
)
clear.click(
fn=lambda: ("", "", "", ""),
inputs=None,
outputs=[role, project_id, milestones, reflection]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()
|