Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import random
|
4 |
+
|
5 |
+
# Initialize the Hugging Face text generation pipeline with distilgpt2
|
6 |
+
generator = pipeline("text-generation", model="distilgpt2")
|
7 |
+
|
8 |
+
# Function to generate checklists, tips, and engagement score
|
9 |
+
def generate_project_data(project_input):
|
10 |
+
# Generate checklists (3 tasks)
|
11 |
+
checklist_prompt = f"Generate a list of 3 safety and productivity tasks for a construction project: {project_input}"
|
12 |
+
checklist_response = generator(checklist_prompt, max_length=100, num_return_sequences=1, truncation=True)[0]["generated_text"]
|
13 |
+
# Extract tasks (simple parsing assuming the model returns a list-like structure)
|
14 |
+
tasks = checklist_response.replace(checklist_prompt, "").split(".")[:3]
|
15 |
+
tasks = [task.strip() for task in tasks if task.strip()]
|
16 |
+
if len(tasks) < 3:
|
17 |
+
# Fallback tasks if the model doesn't generate enough
|
18 |
+
tasks.extend([
|
19 |
+
"Conduct a safety briefing with the team.",
|
20 |
+
"Inspect all equipment before use.",
|
21 |
+
"Ensure all workers are wearing PPE."
|
22 |
+
][:3 - len(tasks)])
|
23 |
+
|
24 |
+
# Generate a tip
|
25 |
+
tip_prompt = f"Provide a productivity tip for a construction project supervisor: {project_input}"
|
26 |
+
tip_response = generator(tip_prompt, max_length=50, num_return_sequences=1, truncation=True)[0]["generated_text"]
|
27 |
+
tip = tip_response.replace(tip_prompt, "").strip()
|
28 |
+
if not tip:
|
29 |
+
tip = "Schedule regular breaks to maintain team focus."
|
30 |
+
|
31 |
+
# Generate a mock engagement score (rule-based for simplicity)
|
32 |
+
# In a real scenario, this could be generated by a model trained on engagement data
|
33 |
+
engagement_score = random.randint(70, 90) # Random score between 70 and 90
|
34 |
+
|
35 |
+
# Return the data in the expected JSON format
|
36 |
+
return {
|
37 |
+
"checklists": [{"task": task} for task in tasks],
|
38 |
+
"tips": tip,
|
39 |
+
"engagementScore": engagement_score
|
40 |
+
}
|
41 |
+
|
42 |
+
# Create a Gradio interface
|
43 |
+
interface = gr.Interface(
|
44 |
+
fn=generate_project_data,
|
45 |
+
inputs=gr.Textbox(label="Project Input", placeholder="Enter project details (e.g., Project: Highway Construction, Start Date: 2025-05-01)"),
|
46 |
+
outputs=gr.JSON(label="Generated Data"),
|
47 |
+
title="AI Coach Data Generator",
|
48 |
+
description="Generates daily checklists, tips, and engagement scores for construction projects."
|
49 |
+
)
|
50 |
+
|
51 |
+
# Launch the app
|
52 |
+
interface.launch()
|