File size: 9,135 Bytes
5a6aa4a a65ab2b 5a6aa4a a65ab2b 5a6aa4a b6ca777 5a6aa4a b6ca777 5a6aa4a b6ca777 5a6aa4a b6ca777 5a6aa4a a65ab2b 5a6aa4a b6ca777 5a6aa4a b6ca777 5a6aa4a b6ca777 5a6aa4a b6ca777 5a6aa4a b6ca777 5a6aa4a b6ca777 a65ab2b 5a6aa4a a65ab2b b6ca777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import requests
import json
import logging
from datetime import datetime
from simple_salesforce import Salesforce
from flask import Flask, jsonify, request, render_template, redirect, url_for
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Hugging Face API configuration
HUGGING_FACE_API_URL = "https://api-inference.huggingface.co/models/distilgpt2"
HUGGING_FACE_API_TOKEN = "your_hugging_face_api_token_here" # Replace with your actual Hugging Face API token
# Salesforce configuration
SALESFORCE_USERNAME = "[email protected]"
SALESFORCE_PASSWORD = "Teja90325@"
SALESFORCE_SECURITY_TOKEN = "clceSdBgQ30Rx9BSC66gAcRx"
SALESFORCE_DOMAIN = "login.salesforce.com"
# Validate configuration
if not HUGGING_FACE_API_TOKEN:
logger.error("HUGGING_FACE_API_TOKEN is not set")
raise ValueError("HUGGING_FACE_API_TOKEN must be provided")
if not HUGGING_FACE_API_URL.startswith("https://api-inference.huggingface.co/models/"):
logger.error("Invalid HUGGING_FACE_API_URL: %s", HUGGING_FACE_API_URL)
raise ValueError("HUGGING_FACE_API_URL must point to a valid Hugging Face model")
if not all([SALESFORCE_USERNAME, SALESFORCE_PASSWORD, SALESFORCE_SECURITY_TOKEN]):
logger.error("Salesforce credentials are incomplete")
raise ValueError("Salesforce credentials must be set")
# Initialize Flask app
app = Flask(__name__)
def generate_coaching_output(data):
"""
Generate daily checklist and tips using Hugging Face LLM.
"""
logger.info("Generating coaching output for supervisor %s", data['supervisor_id'])
milestones_json = json.dumps(data['milestones'], indent=2)
prompt = f"""
You are an AI Coach for construction site supervisors. Based on the following data, generate a daily checklist, three focus tips, and a motivational quote. Ensure outputs are concise, actionable, and tailored to the supervisor's role, project status, and reflection log.
Supervisor Role: {data['role']}
Project Milestones: {milestones_json}
Reflection Log: {data['reflection_log']}
Weather: {data['weather']}
Format the response as JSON:
{{
"checklist": ["item1", "item2", ...],
"tips": ["tip1", "tip2", "tip3"],
"quote": "motivational quote"
}}
"""
headers = {
"Authorization": f"Bearer {HUGGING_FACE_API_TOKEN}",
"Content-Type": "application/json"
}
payload = {
"inputs": prompt,
"parameters": {
"max_length": 200,
"temperature": 0.7,
"top_p": 0.9
}
}
try:
response = requests.post(HUGGING_FACE_API_URL, headers=headers, json=payload, timeout=5)
response.raise_for_status()
result = response.json()
generated_text = result[0]["generated_text"] if isinstance(result, list) else result["generated_text"]
start_idx = generated_text.find('{')
end_idx = generated_text.rfind('}') + 1
if start_idx == -1 or end_idx == 0:
logger.error("No valid JSON found in LLM output")
raise ValueError("No valid JSON found in LLM output")
json_str = generated_text[start_idx:end_idx]
output = json.loads(json_str)
logger.info("Successfully generated coaching output")
return output
except requests.exceptions.HTTPError as e:
logger.error("Hugging Face API HTTP error: %s", e)
return None
except (json.JSONDecodeError, ValueError) as e:
logger.error("Error parsing LLM output: %s", e)
return None
except Exception as e:
logger.error("Unexpected error in Hugging Face API call: %s", e)
return None
def save_to_salesforce(output, supervisor_id, project_id):
"""
Save coaching output to Salesforce Supervisor_AI_Coaching__c object.
"""
if not output:
logger.error("No coaching output to save")
return False
try:
sf = Salesforce(
username=SALESFORCE_USERNAME,
password=SALESFORCE_PASSWORD,
security_token=SALESFORCE_SECURITY_TOKEN,
domain=SALESFORCE_DOMAIN
)
logger.info("Connected to Salesforce")
coaching_record = {
"Supervisor_ID__c": supervisor_id,
"Project_ID__c": project_id,
"Daily_Checklist__c": "\n".join(output["checklist"]),
"Suggested_Tips__c": "\n".join(output["tips"]),
"Quote__c": output["quote"],
"Generated_Date__c": datetime.now().strftime("%Y-%m-%d")
}
sf.Supervisor_AI_Coaching__c.upsert(
f"Supervisor_ID__c/{supervisor_id}_{datetime.now().strftime('%Y-%m-%d')}",
coaching_record
)
logger.info("Successfully saved coaching record to Salesforce for supervisor %s", supervisor_id)
return True
except Exception as e:
logger.error("Salesforce error: %s", e)
return False
def fetch_salesforce_data(supervisor_id, project_id):
"""
Fetch coaching data from Salesforce for a given supervisor and project.
"""
try:
sf = Salesforce(
username=SALESFORCE_USERNAME,
password=SALESFORCE_PASSWORD,
security_token=SALESFORCE_SECURITY_TOKEN,
domain=SALESFORCE_DOMAIN
)
logger.info("Connected to Salesforce for data fetch")
query = f"""
SELECT Daily_Checklist__c, Suggested_Tips__c, Quote__c, Generated_Date__c
FROM Supervisor_AI_Coaching__c
WHERE Supervisor_ID__c = '{supervisor_id}' AND Project_ID__c = '{project_id}'
ORDER BY Generated_Date__c DESC
LIMIT 1
"""
result = sf.query(query)
if result['totalSize'] > 0:
record = result['records'][0]
return {
'checklist': record['Daily_Checklist__c'].split('\n') if record['Daily_Checklist__c'] else [],
'tips': record['Suggested_Tips__c'].split('\n') if record['Suggested_Tips__c'] else [],
'quote': record['Quote__c'] or ''
}
else:
logger.info("No coaching data found for supervisor %s and project %s", supervisor_id, project_id)
return None
except Exception as e:
logger.error("Salesforce fetch error: %s", e)
return None
@app.route('/', methods=['GET'])
def redirect_to_ui():
"""
Redirect root URL to the UI.
"""
return redirect(url_for('ui'))
@app.route('/ui', methods=['GET', 'POST'])
def ui():
"""
Serve the HTML user interface and handle form submissions.
"""
form_data = {}
output = {}
error = ""
if request.method == 'POST':
action = request.form.get('action')
form_data = {
'supervisor_id': request.form.get('supervisor_id', ''),
'role': request.form.get('role', ''),
'project_id': request.form.get('project_id', ''),
'weather': request.form.get('weather', ''),
'milestones': request.form.get('milestones', ''),
'reflection': request.form.get('reflection', '')
}
if action == 'generate':
# Validate all fields
if not all([form_data['supervisor_id'], form_data['role'], form_data['project_id'],
form_data['weather'], form_data['milestones'], form_data['reflection']]):
error = "Error: All fields are required."
else:
# First, try to fetch existing data from Salesforce
sf_data = fetch_salesforce_data(form_data['supervisor_id'], form_data['project_id'])
if sf_data:
output = sf_data
else:
# If no data exists, generate new output
data = {
'supervisor_id': form_data['supervisor_id'],
'role': form_data['role'],
'project_id': form_data['project_id'],
'milestones': [m.strip() for m in form_data['milestones'].split(',') if m.strip()],
'reflection_log': form_data['reflection'],
'weather': form_data['weather']
}
coaching_output = generate_coaching_output(data)
if coaching_output:
success = save_to_salesforce(coaching_output, data['supervisor_id'], data['project_id'])
if success:
output = coaching_output
else:
error = "Error: Failed to save to Salesforce."
else:
error = "Error: Failed to generate coaching output."
return render_template('index.html', form_data=form_data, output=output, error=error)
@app.route('/health', methods=['GET'])
def health_check():
"""
Health check endpoint.
"""
return jsonify({"status": "healthy", "message": "Application is running"}), 200
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860) |