File size: 6,788 Bytes
02615cd
 
5a6aa4a
d85f039
02615cd
 
 
 
5a6aa4a
d85f039
02615cd
d85f039
 
02615cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a65ab2b
 
02615cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a6aa4a
 
02615cd
 
 
 
 
 
 
 
 
 
5a6aa4a
02615cd
 
 
 
 
 
 
 
 
 
 
5a6aa4a
02615cd
 
 
 
 
 
 
 
 
5a6aa4a
 
 
02615cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a6aa4a
 
02615cd
 
 
 
 
 
5a6aa4a
 
02615cd
 
d85f039
02615cd
 
 
 
 
 
 
 
 
 
 
 
 
5a6aa4a
02615cd
 
 
 
 
5a6aa4a
02615cd
 
 
 
 
 
 
 
 
 
 
5a6aa4a
02615cd
5a6aa4a
02615cd
5a6aa4a
a65ab2b
02615cd
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import requests
import json
import os
import logging
from datetime import datetime
from dotenv import load_dotenv
from simple_salesforce import Salesforce
from flask import Flask, jsonify, request, render_template, redirect, url_for

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Load environment variables
load_dotenv()

# Hugging Face API configuration
HUGGING_FACE_API_URL = os.getenv("HUGGING_FACE_API_URL", "https://api-inference.huggingface.co/models/distilgpt2")
HUGGING_FACE_API_TOKEN = os.getenv("HUGGING_FACE_API_TOKEN")

# Salesforce configuration
SALESFORCE_USERNAME = os.getenv("SALESFORCE_USERNAME")
SALESFORCE_PASSWORD = os.getenv("SALESFORCE_PASSWORD")
SALESFORCE_SECURITY_TOKEN = os.getenv("SALESFORCE_SECURITY_TOKEN")
SALESFORCE_DOMAIN = os.getenv("SALESFORCE_DOMAIN", "login")

# Validate environment variables
if not HUGGING_FACE_API_TOKEN:
    logger.error("HUGGING_FACE_API_TOKEN is not set")
    raise ValueError("HUGGING_FACE_API_TOKEN environment variable is not set")
if not HUGGING_FACE_API_URL.startswith("https://api-inference.huggingface.co/models/"):
    logger.error("Invalid HUGGING_FACE_API_URL: %s", HUGGING_FACE_API_URL)
    raise ValueError("HUGGING_FACE_API_URL must point to a valid Hugging Face model")
if not all([SALESFORCE_USERNAME, SALESFORCE_PASSWORD, SALESFORCE_SECURITY_TOKEN]):
    logger.error("Salesforce credentials are incomplete")
    raise ValueError("Salesforce credentials must be set")

# Initialize Flask app
app = Flask(__name__)

def generate_coaching_output(data):
    """
    Generate daily checklist and tips using Hugging Face LLM.
    """
    logger.info("Generating coaching output for supervisor %s", data['supervisor_id'])
    milestones_json = json.dumps(data['milestones'], indent=2)
    prompt = f"""
You are an AI Coach for construction site supervisors. Based on the following data, generate a daily checklist, three focus tips, and a motivational quote. Ensure outputs are concise, actionable, and tailored to the supervisor's role, project status, and reflection log.

Supervisor Role: {data['role']}
Project Milestones: {milestones_json}
Reflection Log: {data['reflection_log']}
Weather: {data['weather']}

Format the response as JSON:
{{
    "checklist": ["item1", "item2", ...],
    "tips": ["tip1", "tip2", "tip3"],
    "quote": "motivational quote"
}}
"""

    headers = {
        "Authorization": f"Bearer {HUGGING_FACE_API_TOKEN}",
        "Content-Type": "application/json"
    }
    payload = {
        "inputs": prompt,
        "parameters": {
            "max_length": 200,
            "temperature": 0.7,
            "top_p": 0.9
        }
    }

    try:
        response = requests.post(HUGGING_FACE_API_URL, headers=headers, json=payload, timeout=5)
        response.raise_for_status()
        result = response.json()
        generated_text = result[0]["generated_text"] if isinstance(result, list) else result["generated_text"]

        start_idx = generated_text.find('{')
        end_idx = generated_text.rfind('}') + 1
        if start_idx == -1 or end_idx == 0:
            logger.error("No valid JSON found in LLM output")
            raise ValueError("No valid JSON found in LLM output")
        
        json_str = generated_text[start_idx:end_idx]
        output = json.loads(json_str)
        logger.info("Successfully generated coaching output")
        return output

    except requests.exceptions.HTTPError as e:
        logger.error("Hugging Face API HTTP error: %s", e)
        return None
    except (json.JSONDecodeError, ValueError) as e:
        logger.error("Error parsing LLM output: %s", e)
        return None
    except Exception as e:
        logger.error("Unexpected error in Hugging Face API call: %s", e)
        return None

def save_to_salesforce(output, supervisor_id, project_id):
    """
    Save coaching output to Salesforce Supervisor_AI_Coaching__c object.
    """
    if not output:
        logger.error("No coaching output to save")
        return False

    try:
        sf = Salesforce(
            username=SALESFORCE_USERNAME,
            password=SALESFORCE_PASSWORD,
            security_token=SALESFORCE_SECURITY_TOKEN,
            domain=SALESFORCE_DOMAIN
        )
        logger.info("Connected to Salesforce")

        coaching_record = {
            "Supervisor_ID__c": supervisor_id,
            "Project_ID__c": project_id,
            "Daily_Checklist__c": "\n".join(output["checklist"]),
            "Suggested_Tips__c": "\n".join(output["tips"]),
            "Quote__c": output["quote"],
            "Generated_Date__c": datetime.now().strftime("%Y-%m-%d")
        }

        sf.Supervisor_AI_Coaching__c.upsert(
            f"Supervisor_ID__c/{supervisor_id}_{datetime.now().strftime('%Y-%m-%d')}",
            coaching_record
        )
        logger.info("Successfully saved coaching record to Salesforce for supervisor %s", supervisor_id)
        return True

    except Exception as e:
        logger.error("Salesforce error: %s", e)
        return False

@app.route('/', methods=['GET'])
def redirect_to_ui():
    """
    Redirect root URL to the UI.
    """
    return redirect(url_for('ui'))

@app.route('/ui', methods=['GET'])
def ui():
    """
    Serve the HTML user interface.
    """
    return render_template('index.html')

@app.route('/generate', methods=['POST'])
def generate_endpoint():
    """
    Endpoint to generate coaching output based on supervisor data.
    """
    try:
        data = request.get_json()
        if not data or not all(key in data for key in ['supervisor_id', 'role', 'project_id', 'milestones', 'reflection_log', 'weather']):
            return jsonify({"status": "error", "message": "Invalid or missing supervisor data"}), 400

        coaching_output = generate_coaching_output(data)
        if coaching_output:
            success = save_to_salesforce(coaching_output, data["supervisor_id"], data["project_id"])
            if success:
                return jsonify({"status": "success", "output": coaching_output}), 200
            else:
                return jsonify({"status": "error", "message": "Failed to save to Salesforce"}), 500
        else:
            return jsonify({"status": "error", "message": "Failed to generate coaching output"}), 500
    except Exception as e:
        logger.error("Error in generate endpoint: %s", e)
        return jsonify({"status": "error", "message": str(e)}), 500

@app.route('/health', methods=['GET'])
def health_check():
    """
    Health check endpoint.
    """
    return jsonify({"status": "healthy", "message": "Application is running"}), 200

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=int(os.getenv("PORT", 7860)))