File size: 6,788 Bytes
02615cd 5a6aa4a d85f039 02615cd 5a6aa4a d85f039 02615cd d85f039 02615cd a65ab2b 02615cd 5a6aa4a 02615cd 5a6aa4a 02615cd 5a6aa4a 02615cd 5a6aa4a 02615cd 5a6aa4a 02615cd 5a6aa4a 02615cd d85f039 02615cd 5a6aa4a 02615cd 5a6aa4a 02615cd 5a6aa4a 02615cd 5a6aa4a 02615cd 5a6aa4a a65ab2b 02615cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import requests
import json
import os
import logging
from datetime import datetime
from dotenv import load_dotenv
from simple_salesforce import Salesforce
from flask import Flask, jsonify, request, render_template, redirect, url_for
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# Hugging Face API configuration
HUGGING_FACE_API_URL = os.getenv("HUGGING_FACE_API_URL", "https://api-inference.huggingface.co/models/distilgpt2")
HUGGING_FACE_API_TOKEN = os.getenv("HUGGING_FACE_API_TOKEN")
# Salesforce configuration
SALESFORCE_USERNAME = os.getenv("SALESFORCE_USERNAME")
SALESFORCE_PASSWORD = os.getenv("SALESFORCE_PASSWORD")
SALESFORCE_SECURITY_TOKEN = os.getenv("SALESFORCE_SECURITY_TOKEN")
SALESFORCE_DOMAIN = os.getenv("SALESFORCE_DOMAIN", "login")
# Validate environment variables
if not HUGGING_FACE_API_TOKEN:
logger.error("HUGGING_FACE_API_TOKEN is not set")
raise ValueError("HUGGING_FACE_API_TOKEN environment variable is not set")
if not HUGGING_FACE_API_URL.startswith("https://api-inference.huggingface.co/models/"):
logger.error("Invalid HUGGING_FACE_API_URL: %s", HUGGING_FACE_API_URL)
raise ValueError("HUGGING_FACE_API_URL must point to a valid Hugging Face model")
if not all([SALESFORCE_USERNAME, SALESFORCE_PASSWORD, SALESFORCE_SECURITY_TOKEN]):
logger.error("Salesforce credentials are incomplete")
raise ValueError("Salesforce credentials must be set")
# Initialize Flask app
app = Flask(__name__)
def generate_coaching_output(data):
"""
Generate daily checklist and tips using Hugging Face LLM.
"""
logger.info("Generating coaching output for supervisor %s", data['supervisor_id'])
milestones_json = json.dumps(data['milestones'], indent=2)
prompt = f"""
You are an AI Coach for construction site supervisors. Based on the following data, generate a daily checklist, three focus tips, and a motivational quote. Ensure outputs are concise, actionable, and tailored to the supervisor's role, project status, and reflection log.
Supervisor Role: {data['role']}
Project Milestones: {milestones_json}
Reflection Log: {data['reflection_log']}
Weather: {data['weather']}
Format the response as JSON:
{{
"checklist": ["item1", "item2", ...],
"tips": ["tip1", "tip2", "tip3"],
"quote": "motivational quote"
}}
"""
headers = {
"Authorization": f"Bearer {HUGGING_FACE_API_TOKEN}",
"Content-Type": "application/json"
}
payload = {
"inputs": prompt,
"parameters": {
"max_length": 200,
"temperature": 0.7,
"top_p": 0.9
}
}
try:
response = requests.post(HUGGING_FACE_API_URL, headers=headers, json=payload, timeout=5)
response.raise_for_status()
result = response.json()
generated_text = result[0]["generated_text"] if isinstance(result, list) else result["generated_text"]
start_idx = generated_text.find('{')
end_idx = generated_text.rfind('}') + 1
if start_idx == -1 or end_idx == 0:
logger.error("No valid JSON found in LLM output")
raise ValueError("No valid JSON found in LLM output")
json_str = generated_text[start_idx:end_idx]
output = json.loads(json_str)
logger.info("Successfully generated coaching output")
return output
except requests.exceptions.HTTPError as e:
logger.error("Hugging Face API HTTP error: %s", e)
return None
except (json.JSONDecodeError, ValueError) as e:
logger.error("Error parsing LLM output: %s", e)
return None
except Exception as e:
logger.error("Unexpected error in Hugging Face API call: %s", e)
return None
def save_to_salesforce(output, supervisor_id, project_id):
"""
Save coaching output to Salesforce Supervisor_AI_Coaching__c object.
"""
if not output:
logger.error("No coaching output to save")
return False
try:
sf = Salesforce(
username=SALESFORCE_USERNAME,
password=SALESFORCE_PASSWORD,
security_token=SALESFORCE_SECURITY_TOKEN,
domain=SALESFORCE_DOMAIN
)
logger.info("Connected to Salesforce")
coaching_record = {
"Supervisor_ID__c": supervisor_id,
"Project_ID__c": project_id,
"Daily_Checklist__c": "\n".join(output["checklist"]),
"Suggested_Tips__c": "\n".join(output["tips"]),
"Quote__c": output["quote"],
"Generated_Date__c": datetime.now().strftime("%Y-%m-%d")
}
sf.Supervisor_AI_Coaching__c.upsert(
f"Supervisor_ID__c/{supervisor_id}_{datetime.now().strftime('%Y-%m-%d')}",
coaching_record
)
logger.info("Successfully saved coaching record to Salesforce for supervisor %s", supervisor_id)
return True
except Exception as e:
logger.error("Salesforce error: %s", e)
return False
@app.route('/', methods=['GET'])
def redirect_to_ui():
"""
Redirect root URL to the UI.
"""
return redirect(url_for('ui'))
@app.route('/ui', methods=['GET'])
def ui():
"""
Serve the HTML user interface.
"""
return render_template('index.html')
@app.route('/generate', methods=['POST'])
def generate_endpoint():
"""
Endpoint to generate coaching output based on supervisor data.
"""
try:
data = request.get_json()
if not data or not all(key in data for key in ['supervisor_id', 'role', 'project_id', 'milestones', 'reflection_log', 'weather']):
return jsonify({"status": "error", "message": "Invalid or missing supervisor data"}), 400
coaching_output = generate_coaching_output(data)
if coaching_output:
success = save_to_salesforce(coaching_output, data["supervisor_id"], data["project_id"])
if success:
return jsonify({"status": "success", "output": coaching_output}), 200
else:
return jsonify({"status": "error", "message": "Failed to save to Salesforce"}), 500
else:
return jsonify({"status": "error", "message": "Failed to generate coaching output"}), 500
except Exception as e:
logger.error("Error in generate endpoint: %s", e)
return jsonify({"status": "error", "message": str(e)}), 500
@app.route('/health', methods=['GET'])
def health_check():
"""
Health check endpoint.
"""
return jsonify({"status": "healthy", "message": "Application is running"}), 200
if __name__ == "__main__":
app.run(host="0.0.0.0", port=int(os.getenv("PORT", 7860))) |