DPR-5gee / app.py
Rammohan0504's picture
Update app.py
26d8d05 verified
raw
history blame
9.54 kB
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import gradio as gr
import torch
from datetime import datetime
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
from simple_salesforce import Salesforce
import os
from dotenv import load_dotenv
import base64
import io
# Load environment variables from .env file
load_dotenv()
# Salesforce credentials
SF_USERNAME = os.getenv('SF_USERNAME')
SF_PASSWORD = os.getenv('SF_PASSWORD')
SF_SECURITY_TOKEN = os.getenv('SF_SECURITY_TOKEN')
# Initialize Salesforce connection
try:
sf = Salesforce(username=SF_USERNAME, password=SF_PASSWORD, security_token=SF_SECURITY_TOKEN)
except Exception as e:
sf = None
print(f"Failed to connect to Salesforce: {str(e)}")
# Load BLIP model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
model.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Inference function to generate captions dynamically based on image content
def generate_captions_from_image(image):
if image.mode != "RGB":
image = image.convert("RGB")
# Preprocess the image and generate a caption
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
output = model.generate(**inputs, max_new_tokens=50)
caption = processor.decode(output[0], skip_special_tokens=True)
return caption
# Function to save DPR text to a PDF file
def save_dpr_to_pdf(dpr_text, filename):
try:
# Create a PDF document
doc = SimpleDocTemplate(filename, pagesize=letter)
styles = getSampleStyleSheet()
# Define custom styles
title_style = ParagraphStyle(
name='Title',
fontSize=16,
leading=20,
alignment=1, # Center
spaceAfter=20,
textColor=colors.black,
fontName='Helvetica-Bold'
)
body_style = ParagraphStyle(
name='Body',
fontSize=12,
leading=14,
spaceAfter=10,
textColor=colors.black,
fontName='Helvetica'
)
# Build the PDF content
flowables = []
# Add title
flowables.append(Paragraph("Daily Progress Report", title_style))
# Split DPR text into lines and add as paragraphs
for line in dpr_text.split('\n'):
# Replace problematic characters for PDF
line = line.replace('\u2019', "'").replace('\u2018', "'")
if line.strip():
flowables.append(Paragraph(line, body_style))
else:
flowables.append(Spacer(1, 12))
# Build the PDF
doc.build(flowables)
return f"PDF saved successfully as {filename}", filename
except Exception as e:
return f"Error saving PDF: {str(e)}", None
# Function to upload a file to Salesforce as ContentVersion
def upload_file_to_salesforce(file_path, filename, sf_connection, file_type):
try:
# Read file content and encode in base64
with open(file_path, 'rb') as f:
file_content = f.read()
file_content_b64 = base64.b64encode(file_content).decode('utf-8')
# Set description based on file type
description = "Daily Progress Report PDF" if file_type == "pdf" else "Site Image"
# Create ContentVersion
content_version = sf_connection.ContentVersion.create({
'Title': filename,
'PathOnClient': filename,
'VersionData': file_content_b64,
'Description': description
})
# Get ContentDocumentId
content_version_id = content_version['id']
content_document = sf_connection.query(
f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'"
)
content_document_id = content_document['records'][0]['ContentDocumentId']
# Fix URL generation to avoid duplicate salesforce.com in the URL
content_document_url = f"https://{sf_connection.sf_instance}.salesforce.com/{content_document_id}"
return content_document_id, content_document_url, f"File {filename} uploaded successfully"
except Exception as e:
return None, None, f"Error uploading {filename} to Salesforce: {str(e)}"
# Function to generate the daily progress report (DPR), save as PDF, and upload to Salesforce
def generate_dpr(files):
dpr_text = []
captions = []
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Add header to the DPR
dpr_text.append(f"Daily Progress Report\nGenerated on: {current_time}\n")
# Process each uploaded file (image)
for file in files:
# Open the image from file path
image = Image.open(file.name)
if image.mode != "RGB":
image = image.convert("RGB")
# Dynamically generate a caption based on the image
caption = generate_captions_from_image(image)
captions.append(caption)
# Generate DPR section for this image with dynamic caption
dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
dpr_text.append(dpr_section)
# Combine DPR text
dpr_output = "\n".join(dpr_text)
# Generate PDF filename with timestamp
pdf_filename = f"DPR_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
# Save DPR text to PDF
pdf_result, pdf_filepath = save_dpr_to_pdf(dpr_output, pdf_filename)
# Salesforce upload
salesforce_result = ""
pdf_content_document_id = None
pdf_url = None
image_content_document_ids = []
if sf and pdf_filepath:
try:
# Create Daily_Progress_Reports__c record
report_description = "; ".join(captions)[:255] # Concatenate captions, limit to 255 chars
# The fix: Assign the report_description to 'Detected_Activities__c' instead of 'Report_Description__c'
dpr_record = sf.Daily_Progress_Reports__c.create({
'Detected_Activities__c': report_description # Store in Detected_Activities__c field
})
dpr_record_id = dpr_record['id']
salesforce_result += f"Created Daily_Progress_Reports__c record with ID: {dpr_record_id}\n"
# Upload PDF to Salesforce
pdf_content_document_id, pdf_url, pdf_upload_result = upload_file_to_salesforce(
pdf_filepath, pdf_filename, sf, "pdf"
)
salesforce_result += pdf_upload_result + "\n"
# Link PDF to DPR record
if pdf_content_document_id:
sf.ContentDocumentLink.create({
'ContentDocumentId': pdf_content_document_id,
'LinkedEntityId': dpr_record_id,
'ShareType': 'V'
})
# Update the DPR record with the PDF URL
if pdf_url:
sf.Daily_Progress_Reports__c.update(dpr_record_id, {
'PDF_URL__c': pdf_url
})
salesforce_result += f"Updated PDF URL for record ID {dpr_record_id}\n"
# Upload images to Salesforce
for file in files:
image_filename = os.path.basename(file.name)
image_content_document_id, image_upload_result = upload_file_to_salesforce(
file.name, image_filename, sf, "image"
)
if image_content_document_id:
image_content_document_ids.append(image_content_document_id)
salesforce_result += image_upload_result + "\n"
# Link image to DPR record
if image_content_document_id:
sf.ContentDocumentLink.create({
'ContentDocumentId': image_content_document_id,
'LinkedEntityId': dpr_record_id,
'ShareType': 'V'
})
except Exception as e:
salesforce_result += f"Error interacting with Salesforce: {str(e)}\n"
else:
salesforce_result = "Salesforce connection not available or PDF generation failed.\n"
# Return DPR text, PDF file, and Salesforce upload status
return (
dpr_output + f"\n\n{pdf_result}\n\nSalesforce Upload Status:\n{salesforce_result}",
pdf_filepath
)
# Gradio interface for uploading multiple files, displaying DPR, and downloading PDF
iface = gr.Interface(
fn=generate_dpr,
inputs=gr.Files(type="filepath", label="Upload Site Photos"),
outputs=[
gr.Textbox(label="Daily Progress Report"),
gr.File(label="Download PDF")
],
title="Daily Progress Report Generator",
description="Upload up to 10 site photos. The AI model will generate a text-based Daily Progress Report (DPR), save it as a PDF, and upload the PDF and images to Salesforce under Daily_Progress_Reports__c in the Files related list. Download the PDF locally if needed.",
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch()