DPR-5gee / app.py
Rammohan0504's picture
Update app.py
4e27730 verified
raw
history blame
4.14 kB
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import gradio as gr
import torch
from datetime import datetime
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
# Load BLIP model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
model.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Define categories for construction activities and materials
construction_terms = {
"activities": ["pouring", "scaffolding", "building", "excavation", "piling", "digging", "cementing", "welding", "cutting", "assembling", "drilling"],
"materials": ["concrete", "steel", "wood", "bricks", "cement", "sand", "mortar", "rebar", "plaster", "tiles"],
"progress": ["completed", "ongoing", "in-progress", "starting", "finished", "under construction"]
}
# Function to detect activities and materials
def detect_construction_info(caption):
activity_found = []
material_found = []
progress_found = []
# Split the caption into words and check for the terms
for word in caption.split():
word_lower = word.lower()
if word_lower in construction_terms["activities"]:
activity_found.append(word)
elif word_lower in construction_terms["materials"]:
material_found.append(word)
elif word_lower in construction_terms["progress"]:
progress_found.append(word)
# Build the informative output
activity_str = ", ".join(activity_found) if activity_found else "No specific activities detected."
material_str = ", ".join(material_found) if material_found else "No materials detected."
progress_str = ", ".join(progress_found) if progress_found else "No progress information available."
return f"Activities: {activity_str}\nMaterials: {material_str}\nProgress: {progress_str}"
# Function to generate the daily progress report
def generate_dpr(files):
dpr_text = []
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Add header to the PDF
dpr_text.append(f"Daily Progress Report\nGenerated on: {current_time}\n")
# Process each uploaded file (image)
for file in files:
# Open the image from file path
image = Image.open(file.name) # Using file.name for filepath
if image.mode != "RGB":
image = image.convert("RGB")
# Preprocess the image and generate a caption
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
output = model.generate(**inputs, max_new_tokens=50)
caption = processor.decode(output[0], skip_special_tokens=True)
# Get detailed construction information based on the caption
detailed_caption = detect_construction_info(caption)
# Generate DPR section for this image
dpr_section = f"\nImage: {file.name}\n{detailed_caption}\n"
dpr_text.append(dpr_section)
# Generate a PDF report
pdf_path = "dpr_report.pdf"
c = canvas.Canvas(pdf_path, pagesize=letter)
c.drawString(100, 750, "Daily Progress Report")
c.drawString(100, 730, f"Generated on: {current_time}")
# Add the detailed captions for each image to the PDF
y_position = 700
for section in dpr_text:
c.drawString(100, y_position, section)
y_position -= 100 # Move down for the next section
if y_position < 100:
c.showPage()
y_position = 750
c.save()
return pdf_path
# Gradio interface for uploading multiple files
iface = gr.Interface(
fn=generate_dpr,
inputs=gr.Files(type="filepath", label="Upload Site Photos"), # Handle batch upload of images
outputs="file",
title="Daily Progress Report Generator",
description="Upload up to 10 site photos. The AI model will detect construction activities, materials, and progress and generate a PDF report.",
allow_flagging="never" # Optional: Disable flagging
)
iface.launch()