DPR-5gee / app.py
Rammohan0504's picture
Update app.py
27d8a02 verified
import os
import shutil
import base64
import time
import concurrent.futures
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
import torch
from datetime import datetime
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as PDFImage
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
from simple_salesforce import Salesforce
from dotenv import load_dotenv
import gradio as gr
# Load environment variables from .env file
load_dotenv()
# Salesforce credentials
SF_USERNAME = os.getenv('SF_USERNAME')
SF_PASSWORD = os.getenv('SF_PASSWORD')
SF_SECURITY_TOKEN = os.getenv('SF_SECURITY_TOKEN')
# Initialize Salesforce connection
try:
sf = Salesforce(username=SF_USERNAME, password=SF_PASSWORD, security_token=SF_SECURITY_TOKEN)
except Exception as e:
sf = None
print(f"Failed to connect to Salesforce: {str(e)}")
# Load BLIP model and processor
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
model.eval().to(device)
# Inference function to generate captions dynamically based on image content
def generate_captions_from_image(image):
if image.mode != "RGB":
image = image.convert("RGB")
# Resize for faster processing
image = image.resize((224, 224)) # Adjust to smaller resolution for faster inference
# Preprocess the image and generate a caption
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
output = model.generate(**inputs, max_length=50)
caption = processor.decode(output[0], skip_special_tokens=True)
return caption
# Function to save DPR text to a PDF file
def save_dpr_to_pdf(dpr_text, image_paths, captions, filename):
try:
# Create a PDF document
doc = SimpleDocTemplate(filename, pagesize=letter)
styles = getSampleStyleSheet()
# Define custom styles
title_style = ParagraphStyle(
name='Title',
fontSize=16,
leading=20,
alignment=1, # Center
spaceAfter=20,
textColor=colors.black,
fontName='Helvetica-Bold'
)
body_style = ParagraphStyle(
name='Body',
fontSize=12,
leading=14,
spaceAfter=10,
textColor=colors.black,
fontName='Helvetica'
)
# Build the PDF content
flowables = []
# Add title
flowables.append(Paragraph("Daily Progress Report", title_style))
# Split DPR text into lines and add as paragraphs (excluding descriptions for images)
for line in dpr_text.split('\n'):
# Replace problematic characters for PDF
line = line.replace('\u2019', "'").replace('\u2018', "'")
if line.strip():
flowables.append(Paragraph(line, body_style))
else:
flowables.append(Spacer(1, 12))
# Add images and captions in the correct order (no need to add description to dpr_text again)
for img_path, caption in zip(image_paths, captions):
try:
# Add image first
img = PDFImage(img_path, width=200, height=150) # Adjust image size if needed
flowables.append(img)
# Add description below the image
description = f"Description: {caption}"
flowables.append(Paragraph(description, body_style))
flowables.append(Spacer(1, 12)) # Add some space between images
except Exception as e:
flowables.append(Paragraph(f"Error loading image: {str(e)}", body_style))
# Build the PDF
doc.build(flowables)
return f"PDF saved successfully as {filename}", filename
except Exception as e:
return f"Error saving PDF: {str(e)}", None
# Function to upload a file to Salesforce as ContentVersion
def upload_file_to_salesforce(file_path, filename, sf_connection, file_type):
try:
# Read file content and encode in base64
with open(file_path, 'rb') as f:
file_content = f.read()
file_content_b64 = base64.b64encode(file_content).decode('utf-8')
# Set description based on file type
description = "Daily Progress Report PDF" if file_type == "pdf" else "Site Image"
# Create ContentVersion
content_version = sf_connection.ContentVersion.create({
'Title': filename,
'PathOnClient': filename,
'VersionData': file_content_b64,
'Description': description
})
# Get ContentDocumentId
content_version_id = content_version['id']
content_document = sf_connection.query(
f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'"
)
content_document_id = content_document['records'][0]['ContentDocumentId']
# Generate a valid Salesforce URL for the ContentDocument
content_document_url = f"https://{sf_connection.sf_instance}/sfc/servlet.shepherd/version/download/{content_version_id}"
return content_document_id, content_document_url, f"File {filename} uploaded successfully"
except Exception as e:
return None, None, f"Error uploading {filename} to Salesforce: {str(e)}"
# Function to generate the daily progress report (DPR), save as PDF, and upload to Salesforce
def generate_dpr(files):
dpr_text = []
captions = []
image_paths = []
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Add header to the DPR
dpr_text.append(f"Daily Progress Report\nGenerated on: {current_time}\n")
# Process images in parallel for faster performance
with concurrent.futures.ThreadPoolExecutor() as executor:
results = list(executor.map(lambda file: generate_captions_from_image(Image.open(file.name)), files))
for i, file in enumerate(files):
caption = results[i]
captions.append(caption)
# Generate DPR section for this image with dynamic caption
dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
dpr_text.append(dpr_section)
# Save image path for embedding in the report
image_paths.append(file.name)
# Combine DPR text
dpr_output = "\n".join(dpr_text)
# Generate PDF filename with timestamp
pdf_filename = f"DPR_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
# Save DPR text to PDF
pdf_result, pdf_filepath = save_dpr_to_pdf(dpr_output, image_paths, captions, pdf_filename)
if sf and pdf_filepath:
try:
# Create Daily_Progress_Reports__c record
report_description = "; ".join(captions)[:255] # Concatenate captions, limit to 255 chars
dpr_record = sf.Daily_Progress_Reports__c.create({
'Detected_Activities__c': report_description # Store in Detected_Activities__c field
})
dpr_record_id = dpr_record['id']
# Upload PDF to Salesforce
pdf_content_document_id, pdf_url, pdf_upload_result = upload_file_to_salesforce(
pdf_filepath, pdf_filename, sf, "pdf"
)
# Link PDF to DPR record
if pdf_content_document_id:
sf.ContentDocumentLink.create({
'ContentDocumentId': pdf_content_document_id,
'LinkedEntityId': dpr_record_id,
'ShareType': 'V'
})
# Update the DPR record with the PDF URL
if pdf_url:
sf.Daily_Progress_Reports__c.update(dpr_record_id, {
'PDF_URL__c': pdf_url # Storing the PDF URL correctly
})
# Upload images to Salesforce and link them to DPR record
for file in files:
image_filename = os.path.basename(file.name)
image_content_document_id, image_url, image_upload_result = upload_file_to_salesforce(
file.name, image_filename, sf, "image"
)
if image_content_document_id:
# Link image to the Daily Progress Report record (DPR) using ContentDocumentLink
sf.ContentDocumentLink.create({
'ContentDocumentId': image_content_document_id,
'LinkedEntityId': dpr_record_id, # Link image to DPR record
'ShareType': 'V' # 'V' means Viewer access
})
# Now, update the DPR record with the ContentDocumentId in the Site_Images field (if it's a text or URL field)
sf.Daily_Progress_Reports__c.update(dpr_record_id, {
'Site_Images__c': image_content_document_id # Storing the ContentDocumentId directly
})
except Exception as e:
pass # No output for Salesforce errors now
# Return the PDF file for Gradio download (using shutil to copy and return the file)
if pdf_filepath:
# Copy the PDF file to a temporary directory for Gradio to serve it
temp_pdf_path = "/tmp/" + os.path.basename(pdf_filepath)
shutil.copy(pdf_filepath, temp_pdf_path)
# Only return the DPR output and the PDF file path, excluding Salesforce upload details
return (
dpr_output + f"\n\n{pdf_result}", # Removed Salesforce upload status
temp_pdf_path # Returning the file path for download
)
else:
return (
dpr_output + f"\n\n{pdf_result}", # Removed Salesforce upload status
None
)
# Gradio interface for uploading multiple files, displaying DPR, and downloading PDF
iface = gr.Interface(
fn=generate_dpr,
inputs=gr.Files(type="filepath", label="Upload Site Photos"),
outputs=[
gr.Textbox(label="Daily Progress Report"),
gr.File(label="Download PDF", interactive=False)
],
title="Daily Progress Report Generator",
description="Upload up to 10 site photos. The AI model will generate a text-based Daily Progress Report (DPR), save it as a PDF, and upload the PDF and images to Salesforce under Daily_Progress_Reports__c in the Files related list. Download the PDF locally if needed.",
allow_flagging="never",
css="#gradio-share-link-button-0 { display: none !important; }"
)
if __name__ == "__main__":
iface.launch()