Rammohan0504 commited on
Commit
2e55271
·
verified ·
1 Parent(s): 9d2cac1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -2
app.py CHANGED
@@ -10,15 +10,32 @@ model.eval()
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
  model.to(device)
12
 
 
 
 
 
 
 
 
 
13
  # Inference function
14
  def generate_caption(image):
15
  if image.mode != "RGB":
16
  image = image.convert("RGB")
17
 
 
18
  inputs = processor(image, return_tensors="pt").to(device, torch.float16)
19
  output = model.generate(**inputs, max_new_tokens=50)
20
  caption = processor.decode(output[0], skip_special_tokens=True)
21
- return caption
 
 
 
 
 
 
 
 
22
 
23
  # Gradio interface
24
  iface = gr.Interface(
@@ -26,7 +43,7 @@ iface = gr.Interface(
26
  inputs=gr.Image(type="pil"),
27
  outputs="text",
28
  title="Construction Site Image-to-Text Generator",
29
- description="Upload a site photo. The model will detect and describe construction activities."
30
  )
31
 
32
  iface.launch()
 
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
  model.to(device)
12
 
13
+ # List of construction-related terms
14
+ construction_terms = [
15
+ "concrete", "scaffolding", "steel rods", "piling", "excavation",
16
+ "mixer", "cement", "brickwork", "crane", "rebar", "construction",
17
+ "foundation", "building", "formwork", "drywall", "steel beams",
18
+ "hammer", "saw", "nails", "jackhammer"
19
+ ]
20
+
21
  # Inference function
22
  def generate_caption(image):
23
  if image.mode != "RGB":
24
  image = image.convert("RGB")
25
 
26
+ # Preprocess the image and generate a caption
27
  inputs = processor(image, return_tensors="pt").to(device, torch.float16)
28
  output = model.generate(**inputs, max_new_tokens=50)
29
  caption = processor.decode(output[0], skip_special_tokens=True)
30
+
31
+ # Filter the caption to only include construction-related terms
32
+ filtered_caption = " ".join([word for word in caption.split() if word.lower() in construction_terms])
33
+
34
+ # If no construction-related terms are found, return a default message
35
+ if not filtered_caption:
36
+ filtered_caption = "No construction-related activities detected."
37
+
38
+ return filtered_caption
39
 
40
  # Gradio interface
41
  iface = gr.Interface(
 
43
  inputs=gr.Image(type="pil"),
44
  outputs="text",
45
  title="Construction Site Image-to-Text Generator",
46
+ description="Upload a site photo. The model will detect and describe construction activities and materials (e.g., concrete pouring, scaffolding, steel rods)."
47
  )
48
 
49
  iface.launch()