Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,18 @@
|
|
1 |
-
from fastapi import FastAPI, File, UploadFile
|
2 |
-
import requests
|
3 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
4 |
from PIL import Image
|
5 |
-
import
|
6 |
-
import
|
7 |
-
import
|
8 |
-
from dotenv import load_dotenv
|
9 |
-
from simple_salesforce import Salesforce
|
10 |
from reportlab.lib.pagesizes import letter
|
11 |
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as PDFImage
|
12 |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
13 |
from reportlab.lib import colors
|
14 |
-
from
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Load environment variables from .env file
|
17 |
load_dotenv()
|
@@ -28,45 +29,21 @@ except Exception as e:
|
|
28 |
sf = None
|
29 |
print(f"Failed to connect to Salesforce: {str(e)}")
|
30 |
|
31 |
-
#
|
32 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
33 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
34 |
model.eval()
|
35 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
model.to(device)
|
37 |
|
38 |
-
#
|
39 |
-
app = FastAPI()
|
40 |
-
|
41 |
-
# Endpoint for image upload and caption generation
|
42 |
-
@app.post("/predict/")
|
43 |
-
async def predict(file: UploadFile = File(...)):
|
44 |
-
image = Image.open(file.file)
|
45 |
-
|
46 |
-
# Generate caption using Hugging Face model
|
47 |
-
caption = generate_captions_from_image(image)
|
48 |
-
|
49 |
-
# Save the image to a file
|
50 |
-
file_path = f"./uploaded_images/{file.filename}"
|
51 |
-
image.save(file_path)
|
52 |
-
|
53 |
-
# Save the daily report as a PDF
|
54 |
-
pdf_filename = save_dpr_to_pdf(caption, file_path)
|
55 |
-
|
56 |
-
# Upload to Salesforce
|
57 |
-
if sf:
|
58 |
-
salesforce_result = upload_file_to_salesforce(pdf_filename, sf)
|
59 |
-
else:
|
60 |
-
salesforce_result = "Salesforce connection is not available."
|
61 |
-
|
62 |
-
return {"caption": caption, "pdf_filename": pdf_filename, "salesforce_result": salesforce_result}
|
63 |
-
|
64 |
-
|
65 |
-
# Function to generate captions from an image
|
66 |
def generate_captions_from_image(image):
|
67 |
if image.mode != "RGB":
|
68 |
image = image.convert("RGB")
|
69 |
|
|
|
|
|
|
|
70 |
# Preprocess the image and generate a caption
|
71 |
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
|
72 |
output = model.generate(**inputs, max_new_tokens=50)
|
@@ -74,14 +51,11 @@ def generate_captions_from_image(image):
|
|
74 |
|
75 |
return caption
|
76 |
|
77 |
-
# Function to save
|
78 |
-
def save_dpr_to_pdf(
|
79 |
try:
|
80 |
-
# PDF filename
|
81 |
-
pdf_filename = f"DPR_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
|
82 |
-
|
83 |
# Create a PDF document
|
84 |
-
doc = SimpleDocTemplate(
|
85 |
styles = getSampleStyleSheet()
|
86 |
|
87 |
# Define custom styles
|
@@ -109,33 +83,51 @@ def save_dpr_to_pdf(caption, image_path):
|
|
109 |
# Add title
|
110 |
flowables.append(Paragraph("Daily Progress Report", title_style))
|
111 |
|
112 |
-
#
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
# Build the PDF
|
118 |
doc.build(flowables)
|
119 |
-
|
120 |
-
return pdf_filename
|
121 |
except Exception as e:
|
122 |
-
|
123 |
-
return None
|
124 |
|
125 |
-
# Function to upload
|
126 |
-
def upload_file_to_salesforce(
|
127 |
try:
|
128 |
# Read file content and encode in base64
|
129 |
-
with open(
|
130 |
file_content = f.read()
|
131 |
file_content_b64 = base64.b64encode(file_content).decode('utf-8')
|
132 |
|
|
|
|
|
|
|
133 |
# Create ContentVersion
|
134 |
content_version = sf_connection.ContentVersion.create({
|
135 |
-
'Title':
|
136 |
-
'PathOnClient':
|
137 |
'VersionData': file_content_b64,
|
138 |
-
'Description':
|
139 |
})
|
140 |
|
141 |
# Get ContentDocumentId
|
@@ -145,14 +137,134 @@ def upload_file_to_salesforce(pdf_filename, sf_connection):
|
|
145 |
)
|
146 |
content_document_id = content_document['records'][0]['ContentDocumentId']
|
147 |
|
148 |
-
#
|
149 |
-
|
|
|
|
|
|
|
150 |
except Exception as e:
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
-
# To run the app
|
156 |
if __name__ == "__main__":
|
157 |
-
|
158 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|
|
1 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
2 |
from PIL import Image
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from datetime import datetime
|
|
|
|
|
6 |
from reportlab.lib.pagesizes import letter
|
7 |
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as PDFImage
|
8 |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
9 |
from reportlab.lib import colors
|
10 |
+
from simple_salesforce import Salesforce
|
11 |
+
import os
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
import base64
|
14 |
+
import io
|
15 |
+
import concurrent.futures
|
16 |
|
17 |
# Load environment variables from .env file
|
18 |
load_dotenv()
|
|
|
29 |
sf = None
|
30 |
print(f"Failed to connect to Salesforce: {str(e)}")
|
31 |
|
32 |
+
# Load BLIP model and processor
|
33 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
34 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
35 |
model.eval()
|
36 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
model.to(device)
|
38 |
|
39 |
+
# Inference function to generate captions dynamically based on image content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def generate_captions_from_image(image):
|
41 |
if image.mode != "RGB":
|
42 |
image = image.convert("RGB")
|
43 |
|
44 |
+
# Resize image for faster processing
|
45 |
+
image = image.resize((640, 640))
|
46 |
+
|
47 |
# Preprocess the image and generate a caption
|
48 |
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
|
49 |
output = model.generate(**inputs, max_new_tokens=50)
|
|
|
51 |
|
52 |
return caption
|
53 |
|
54 |
+
# Function to save DPR text to a PDF file
|
55 |
+
def save_dpr_to_pdf(dpr_text, image_paths, captions, filename):
|
56 |
try:
|
|
|
|
|
|
|
57 |
# Create a PDF document
|
58 |
+
doc = SimpleDocTemplate(filename, pagesize=letter)
|
59 |
styles = getSampleStyleSheet()
|
60 |
|
61 |
# Define custom styles
|
|
|
83 |
# Add title
|
84 |
flowables.append(Paragraph("Daily Progress Report", title_style))
|
85 |
|
86 |
+
# Split DPR text into lines and add as paragraphs (excluding descriptions for images)
|
87 |
+
for line in dpr_text.split('\n'):
|
88 |
+
# Replace problematic characters for PDF
|
89 |
+
line = line.replace('\u2019', "'").replace('\u2018', "'")
|
90 |
+
if line.strip():
|
91 |
+
flowables.append(Paragraph(line, body_style))
|
92 |
+
else:
|
93 |
+
flowables.append(Spacer(1, 12))
|
94 |
+
|
95 |
+
# Add images and captions in the correct order (no need to add description to dpr_text again)
|
96 |
+
for img_path, caption in zip(image_paths, captions):
|
97 |
+
try:
|
98 |
+
# Add image first
|
99 |
+
img = PDFImage(img_path, width=200, height=150) # Adjust image size if needed
|
100 |
+
flowables.append(img)
|
101 |
+
# Add description below the image
|
102 |
+
description = f"Description: {caption}"
|
103 |
+
flowables.append(Paragraph(description, body_style))
|
104 |
+
flowables.append(Spacer(1, 12)) # Add some space between images
|
105 |
+
except Exception as e:
|
106 |
+
flowables.append(Paragraph(f"Error loading image: {str(e)}", body_style))
|
107 |
|
108 |
# Build the PDF
|
109 |
doc.build(flowables)
|
110 |
+
return f"PDF saved successfully as {filename}", filename
|
|
|
111 |
except Exception as e:
|
112 |
+
return f"Error saving PDF: {str(e)}", None
|
|
|
113 |
|
114 |
+
# Function to upload a file to Salesforce as ContentVersion
|
115 |
+
def upload_file_to_salesforce(file_path, filename, sf_connection, file_type):
|
116 |
try:
|
117 |
# Read file content and encode in base64
|
118 |
+
with open(file_path, 'rb') as f:
|
119 |
file_content = f.read()
|
120 |
file_content_b64 = base64.b64encode(file_content).decode('utf-8')
|
121 |
|
122 |
+
# Set description based on file type
|
123 |
+
description = "Daily Progress Report PDF" if file_type == "pdf" else "Site Image"
|
124 |
+
|
125 |
# Create ContentVersion
|
126 |
content_version = sf_connection.ContentVersion.create({
|
127 |
+
'Title': filename,
|
128 |
+
'PathOnClient': filename,
|
129 |
'VersionData': file_content_b64,
|
130 |
+
'Description': description
|
131 |
})
|
132 |
|
133 |
# Get ContentDocumentId
|
|
|
137 |
)
|
138 |
content_document_id = content_document['records'][0]['ContentDocumentId']
|
139 |
|
140 |
+
# Generate a valid Salesforce URL for the ContentDocument
|
141 |
+
content_document_url = f"https://{sf_connection.sf_instance}.salesforce.com/{content_document_id}"
|
142 |
+
|
143 |
+
# Ensure the link is valid
|
144 |
+
return content_document_id, content_document_url, f"File {filename} uploaded successfully"
|
145 |
except Exception as e:
|
146 |
+
return None, None, f"Error uploading {filename} to Salesforce: {str(e)}"
|
147 |
+
|
148 |
+
# Function to generate the daily progress report (DPR), save as PDF, and upload to Salesforce
|
149 |
+
def generate_dpr(files):
|
150 |
+
dpr_text = []
|
151 |
+
captions = []
|
152 |
+
image_paths = []
|
153 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
154 |
+
|
155 |
+
# Add header to the DPR
|
156 |
+
dpr_text.append(f"Daily Progress Report\nGenerated on: {current_time}\n")
|
157 |
+
|
158 |
+
# Process images in parallel for faster performance
|
159 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
160 |
+
results = list(executor.map(lambda file: generate_captions_from_image(Image.open(file.name)), files))
|
161 |
+
|
162 |
+
for i, file in enumerate(files):
|
163 |
+
caption = results[i]
|
164 |
+
captions.append(caption)
|
165 |
+
|
166 |
+
# Generate DPR section for this image with dynamic caption
|
167 |
+
dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
|
168 |
+
# Remove the description from the dpr_text section
|
169 |
+
# No need to add it again as the image and caption will be inserted in the PDF
|
170 |
+
dpr_text.append(dpr_section)
|
171 |
+
|
172 |
+
# Save image path for embedding in the report
|
173 |
+
image_paths.append(file.name)
|
174 |
+
|
175 |
+
# Combine DPR text (no redundant description here)
|
176 |
+
dpr_output = "\n".join(dpr_text)
|
177 |
+
|
178 |
+
# Generate PDF filename with timestamp
|
179 |
+
pdf_filename = f"DPR_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
|
180 |
+
|
181 |
+
# Save DPR text to PDF
|
182 |
+
pdf_result, pdf_filepath = save_dpr_to_pdf(dpr_output, image_paths, captions, pdf_filename)
|
183 |
+
|
184 |
+
# Salesforce upload
|
185 |
+
salesforce_result = ""
|
186 |
+
pdf_content_document_id = None
|
187 |
+
pdf_url = None
|
188 |
+
image_content_document_ids = []
|
189 |
+
|
190 |
+
if sf and pdf_filepath:
|
191 |
+
try:
|
192 |
+
# Create Daily_Progress_Reports__c record
|
193 |
+
report_description = "; ".join(captions)[:255] # Concatenate captions, limit to 255 chars
|
194 |
+
dpr_record = sf.Daily_Progress_Reports__c.create({
|
195 |
+
'Detected_Activities__c': report_description # Store in Detected_Activities__c field
|
196 |
+
})
|
197 |
+
dpr_record_id = dpr_record['id']
|
198 |
+
salesforce_result += f"Created Daily_Progress_Reports__c record with ID: {dpr_record_id}\n"
|
199 |
+
|
200 |
+
# Upload PDF to Salesforce
|
201 |
+
pdf_content_document_id, pdf_url, pdf_upload_result = upload_file_to_salesforce(
|
202 |
+
pdf_filepath, pdf_filename, sf, "pdf"
|
203 |
+
)
|
204 |
+
salesforce_result += pdf_upload_result + "\n"
|
205 |
+
|
206 |
+
# Link PDF to DPR record
|
207 |
+
if pdf_content_document_id:
|
208 |
+
sf.ContentDocumentLink.create({
|
209 |
+
'ContentDocumentId': pdf_content_document_id,
|
210 |
+
'LinkedEntityId': dpr_record_id,
|
211 |
+
'ShareType': 'V'
|
212 |
+
})
|
213 |
+
|
214 |
+
# Update the DPR record with the PDF URL
|
215 |
+
if pdf_url:
|
216 |
+
sf.Daily_Progress_Reports__c.update(dpr_record_id, {
|
217 |
+
'PDF_URL__c': pdf_url # Storing the PDF URL correctly
|
218 |
+
})
|
219 |
+
salesforce_result += f"Updated PDF URL for record ID {dpr_record_id}\n"
|
220 |
+
|
221 |
+
# Upload images to Salesforce and create Site_Images__c records
|
222 |
+
for file in files:
|
223 |
+
image_filename = os.path.basename(file.name)
|
224 |
+
image_content_document_id, image_upload_result = upload_file_to_salesforce(
|
225 |
+
file.name, image_filename, sf, "image"
|
226 |
+
)
|
227 |
+
if image_content_document_id:
|
228 |
+
image_content_document_ids.append(image_content_document_id)
|
229 |
+
|
230 |
+
# Create Site_Images__c record and link to DPR
|
231 |
+
site_image_record = sf.Site_Images__c.create({
|
232 |
+
'Image__c': image_content_document_id,
|
233 |
+
'Related_Report__c': dpr_record_id # Link image to DPR record
|
234 |
+
})
|
235 |
+
salesforce_result += image_upload_result + "\n"
|
236 |
+
|
237 |
+
# Link image to DPR record
|
238 |
+
if image_content_document_id:
|
239 |
+
sf.ContentDocumentLink.create({
|
240 |
+
'ContentDocumentId': image_content_document_id,
|
241 |
+
'LinkedEntityId': dpr_record_id,
|
242 |
+
'ShareType': 'V'
|
243 |
+
})
|
244 |
+
|
245 |
+
except Exception as e:
|
246 |
+
salesforce_result += f"Error interacting with Salesforce: {str(e)}\n"
|
247 |
+
else:
|
248 |
+
salesforce_result = "Salesforce connection not available or PDF generation failed.\n"
|
249 |
+
|
250 |
+
# Return DPR text, PDF file, and Salesforce upload status
|
251 |
+
return (
|
252 |
+
dpr_output + f"\n\n{pdf_result}\n\nSalesforce Upload Status:\n{salesforce_result}",
|
253 |
+
pdf_filepath
|
254 |
+
)
|
255 |
|
256 |
+
# Gradio interface for uploading multiple files, displaying DPR, and downloading PDF
|
257 |
+
iface = gr.Interface(
|
258 |
+
fn=generate_dpr,
|
259 |
+
inputs=gr.Files(type="filepath", label="Upload Site Photos"),
|
260 |
+
outputs=[
|
261 |
+
gr.Textbox(label="Daily Progress Report"),
|
262 |
+
gr.File(label="Download PDF")
|
263 |
+
],
|
264 |
+
title="Daily Progress Report Generator",
|
265 |
+
description="Upload up to 10 site photos. The AI model will generate a text-based Daily Progress Report (DPR), save it as a PDF, and upload the PDF and images to Salesforce under Daily_Progress_Reports__c in the Files related list. Download the PDF locally if needed.",
|
266 |
+
allow_flagging="never"
|
267 |
+
)
|
268 |
|
|
|
269 |
if __name__ == "__main__":
|
270 |
+
iface.launch()
|
|