Rammohan0504 commited on
Commit
9eb2e2a
·
verified ·
1 Parent(s): a45c678

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -159
app.py CHANGED
@@ -1,10 +1,9 @@
1
  from fastapi import FastAPI, File, UploadFile
2
  import requests
3
-
4
  from transformers import BlipProcessor, BlipForConditionalGeneration
5
  from PIL import Image
6
- import gradio as gr
7
  import torch
 
8
  from datetime import datetime
9
  from reportlab.lib.pagesizes import letter
10
  from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as PDFImage
@@ -22,7 +21,6 @@ load_dotenv()
22
 
23
  app = FastAPI()
24
 
25
-
26
  # Salesforce credentials
27
  SF_USERNAME = os.getenv('SF_USERNAME')
28
  SF_PASSWORD = os.getenv('SF_PASSWORD')
@@ -42,35 +40,54 @@ model.eval()
42
  device = "cuda" if torch.cuda.is_available() else "cpu"
43
  model.to(device)
44
 
 
 
45
 
46
- # FastAPI endpoint to handle image upload and caption generation
47
  @app.post("/predict/")
48
  async def predict(image: UploadFile = File(...)):
49
  try:
50
  # Read the image from the request
51
  image_bytes = await image.read()
52
- image = Image.open(BytesIO(image_bytes))
53
-
54
- # Generate caption from the image
55
- caption = generate_captions_from_image(image)
56
- return {"caption": caption}
 
 
 
 
 
 
 
57
  except Exception as e:
58
  return {"error": str(e)}
59
 
60
-
61
- # Inference function to generate captions dynamically based on image content
62
- def generate_captions_from_image(image):
63
  if image.mode != "RGB":
64
  image = image.convert("RGB")
65
 
66
  # Resize image for faster processing
67
  image = image.resize((640, 640))
68
 
69
- # Preprocess the image and generate a caption
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  inputs = processor(image, return_tensors="pt").to(device, torch.float16)
71
  output = model.generate(**inputs, max_new_tokens=50)
72
  caption = processor.decode(output[0], skip_special_tokens=True)
73
-
74
  return caption
75
 
76
  # Function to save DPR text to a PDF file
@@ -133,148 +150,6 @@ def save_dpr_to_pdf(dpr_text, image_paths, captions, filename):
133
  except Exception as e:
134
  return f"Error saving PDF: {str(e)}", None
135
 
136
- # Function to upload a file to Salesforce as ContentVersion
137
- def upload_file_to_salesforce(file_path, filename, sf_connection, file_type):
138
- try:
139
- # Read file content and encode in base64
140
- with open(file_path, 'rb') as f:
141
- file_content = f.read()
142
- file_content_b64 = base64.b64encode(file_content).decode('utf-8')
143
-
144
- # Set description based on file type
145
- description = "Daily Progress Report PDF" if file_type == "pdf" else "Site Image"
146
-
147
- # Create ContentVersion
148
- content_version = sf_connection.ContentVersion.create({
149
- 'Title': filename,
150
- 'PathOnClient': filename,
151
- 'VersionData': file_content_b64,
152
- 'Description': description
153
- })
154
-
155
- # Get ContentDocumentId
156
- content_version_id = content_version['id']
157
- content_document = sf_connection.query(
158
- f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'"
159
- )
160
- content_document_id = content_document['records'][0]['ContentDocumentId']
161
-
162
- # Generate a valid Salesforce URL for the ContentDocument
163
- content_document_url = f"https://{sf_connection.sf_instance}.salesforce.com/{content_document_id}"
164
-
165
- # Ensure the link is valid
166
- return content_document_id, content_document_url, f"File {filename} uploaded successfully"
167
- except Exception as e:
168
- return None, None, f"Error uploading {filename} to Salesforce: {str(e)}"
169
-
170
- # Function to generate the daily progress report (DPR), save as PDF, and upload to Salesforce
171
- def generate_dpr(files):
172
- dpr_text = []
173
- captions = []
174
- image_paths = []
175
- current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
176
-
177
- # Add header to the DPR
178
- dpr_text.append(f"Daily Progress Report\nGenerated on: {current_time}\n")
179
-
180
- # Process images in parallel for faster performance
181
- with concurrent.futures.ThreadPoolExecutor() as executor:
182
- results = list(executor.map(lambda file: generate_captions_from_image(Image.open(file.name)), files))
183
-
184
- for i, file in enumerate(files):
185
- caption = results[i]
186
- captions.append(caption)
187
-
188
- # Generate DPR section for this image with dynamic caption
189
- dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
190
- # Remove the description from the dpr_text section
191
- # No need to add it again as the image and caption will be inserted in the PDF
192
- dpr_text.append(dpr_section)
193
-
194
- # Save image path for embedding in the report
195
- image_paths.append(file.name)
196
-
197
- # Combine DPR text (no redundant description here)
198
- dpr_output = "\n".join(dpr_text)
199
-
200
- # Generate PDF filename with timestamp
201
- pdf_filename = f"DPR_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
202
-
203
- # Save DPR text to PDF
204
- pdf_result, pdf_filepath = save_dpr_to_pdf(dpr_output, image_paths, captions, pdf_filename)
205
-
206
- # Salesforce upload
207
- salesforce_result = ""
208
- pdf_content_document_id = None
209
- pdf_url = None
210
- image_content_document_ids = []
211
-
212
- if sf and pdf_filepath:
213
- try:
214
- # Create Daily_Progress_Reports__c record
215
- report_description = "; ".join(captions)[:255] # Concatenate captions, limit to 255 chars
216
- dpr_record = sf.Daily_Progress_Reports__c.create({
217
- 'Detected_Activities__c': report_description # Store in Detected_Activities__c field
218
- })
219
- dpr_record_id = dpr_record['id']
220
- salesforce_result += f"Created Daily_Progress_Reports__c record with ID: {dpr_record_id}\n"
221
-
222
- # Upload PDF to Salesforce
223
- pdf_content_document_id, pdf_url, pdf_upload_result = upload_file_to_salesforce(
224
- pdf_filepath, pdf_filename, sf, "pdf"
225
- )
226
- salesforce_result += pdf_upload_result + "\n"
227
-
228
- # Link PDF to DPR record
229
- if pdf_content_document_id:
230
- sf.ContentDocumentLink.create({
231
- 'ContentDocumentId': pdf_content_document_id,
232
- 'LinkedEntityId': dpr_record_id,
233
- 'ShareType': 'V'
234
- })
235
-
236
- # Update the DPR record with the PDF URL
237
- if pdf_url:
238
- sf.Daily_Progress_Reports__c.update(dpr_record_id, {
239
- 'PDF_URL__c': pdf_url # Storing the PDF URL correctly
240
- })
241
- salesforce_result += f"Updated PDF URL for record ID {dpr_record_id}\n"
242
-
243
- # Upload images to Salesforce and create Site_Images__c records
244
- for file in files:
245
- image_filename = os.path.basename(file.name)
246
- image_content_document_id, image_upload_result = upload_file_to_salesforce(
247
- file.name, image_filename, sf, "image"
248
- )
249
- if image_content_document_id:
250
- image_content_document_ids.append(image_content_document_id)
251
-
252
- # Create Site_Images__c record and link to DPR
253
- site_image_record = sf.Site_Images__c.create({
254
- 'Image__c': image_content_document_id,
255
- 'Related_Report__c': dpr_record_id # Link image to DPR record
256
- })
257
- salesforce_result += image_upload_result + "\n"
258
-
259
- # Link image to DPR record
260
- if image_content_document_id:
261
- sf.ContentDocumentLink.create({
262
- 'ContentDocumentId': image_content_document_id,
263
- 'LinkedEntityId': dpr_record_id,
264
- 'ShareType': 'V'
265
- })
266
-
267
- except Exception as e:
268
- salesforce_result += f"Error interacting with Salesforce: {str(e)}\n"
269
- else:
270
- salesforce_result = "Salesforce connection not available or PDF generation failed.\n"
271
-
272
- # Return DPR text, PDF file, and Salesforce upload status
273
- return (
274
- dpr_output + f"\n\n{pdf_result}\n\nSalesforce Upload Status:\n{salesforce_result}",
275
- pdf_filepath
276
- )
277
-
278
  # Gradio interface for uploading multiple files, displaying DPR, and downloading PDF
279
  iface = gr.Interface(
280
  fn=generate_dpr,
@@ -289,6 +164,5 @@ iface = gr.Interface(
289
  )
290
 
291
  if __name__ == "__main__":
292
- import uvicorn
293
- uvicorn.run(app, host="0.0.0.0", port=8000)
294
-
 
1
  from fastapi import FastAPI, File, UploadFile
2
  import requests
 
3
  from transformers import BlipProcessor, BlipForConditionalGeneration
4
  from PIL import Image
 
5
  import torch
6
+ import gradio as gr
7
  from datetime import datetime
8
  from reportlab.lib.pagesizes import letter
9
  from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as PDFImage
 
21
 
22
  app = FastAPI()
23
 
 
24
  # Salesforce credentials
25
  SF_USERNAME = os.getenv('SF_USERNAME')
26
  SF_PASSWORD = os.getenv('SF_PASSWORD')
 
40
  device = "cuda" if torch.cuda.is_available() else "cpu"
41
  model.to(device)
42
 
43
+ # FastAPI endpoint to handle image upload and forward it to Hugging Face API for caption generation
44
+ HUGGING_FACE_ENDPOINT = 'https://huggingface.co/spaces/Rammohan0504/DPR-4/predict'
45
 
 
46
  @app.post("/predict/")
47
  async def predict(image: UploadFile = File(...)):
48
  try:
49
  # Read the image from the request
50
  image_bytes = await image.read()
51
+ image = Image.open(io.BytesIO(image_bytes))
52
+
53
+ # Forward the image to Hugging Face endpoint
54
+ response = forward_image_to_huggingface(image)
55
+
56
+ # Check the response from Hugging Face
57
+ if response.status_code == 200:
58
+ result = response.json()
59
+ caption = result.get("caption", "No caption found.")
60
+ return {"caption": caption}
61
+ else:
62
+ return {"error": f"Failed to get prediction from Hugging Face Space. Status code: {response.status_code}"}
63
  except Exception as e:
64
  return {"error": str(e)}
65
 
66
+ # Function to forward the image to Hugging Face API
67
+ def forward_image_to_huggingface(image: Image):
 
68
  if image.mode != "RGB":
69
  image = image.convert("RGB")
70
 
71
  # Resize image for faster processing
72
  image = image.resize((640, 640))
73
 
74
+ # Convert image to bytes for API request
75
+ img_byte_arr = io.BytesIO()
76
+ image.save(img_byte_arr, format='JPEG')
77
+ img_byte_arr = img_byte_arr.getvalue()
78
+
79
+ # Create the payload to send to Hugging Face (it expects a file)
80
+ files = {'file': ('image.jpg', img_byte_arr, 'image/jpeg')}
81
+
82
+ # Make the POST request to Hugging Face Space
83
+ response = requests.post(HUGGING_FACE_ENDPOINT, files=files)
84
+ return response
85
+
86
+ # Inference function to generate captions dynamically based on image content
87
+ def generate_captions_from_image(image):
88
  inputs = processor(image, return_tensors="pt").to(device, torch.float16)
89
  output = model.generate(**inputs, max_new_tokens=50)
90
  caption = processor.decode(output[0], skip_special_tokens=True)
 
91
  return caption
92
 
93
  # Function to save DPR text to a PDF file
 
150
  except Exception as e:
151
  return f"Error saving PDF: {str(e)}", None
152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  # Gradio interface for uploading multiple files, displaying DPR, and downloading PDF
154
  iface = gr.Interface(
155
  fn=generate_dpr,
 
164
  )
165
 
166
  if __name__ == "__main__":
167
+ iface.launch()
168
+