Rammohan0504 commited on
Commit
c4e3ea5
·
verified ·
1 Parent(s): 6da7bf0

Create image_to_text_blip.py

Browse files
Files changed (1) hide show
  1. image_to_text_blip.py +32 -0
image_to_text_blip.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import BlipProcessor, BlipForConditionalGeneration
2
+ from PIL import Image
3
+ import gradio as gr
4
+ import torch
5
+
6
+ # Load BLIP model and processor
7
+ processor = BlipProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
8
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
9
+ model.eval()
10
+ device = "cuda" if torch.cuda.is_available() else "cpu"
11
+ model.to(device)
12
+
13
+ # Inference function
14
+ def generate_caption(image):
15
+ if image.mode != "RGB":
16
+ image = image.convert("RGB")
17
+
18
+ inputs = processor(image, return_tensors="pt").to(device, torch.float16)
19
+ output = model.generate(**inputs, max_new_tokens=50)
20
+ caption = processor.decode(output[0], skip_special_tokens=True)
21
+ return caption
22
+
23
+ # Gradio interface
24
+ iface = gr.Interface(
25
+ fn=generate_caption,
26
+ inputs=gr.Image(type="pil"),
27
+ outputs="text",
28
+ title="Construction Site Image-to-Text Generator",
29
+ description="Upload a site photo. The model will detect and describe construction activities."
30
+ )
31
+
32
+ iface.launch()