Spaces:
Sleeping
Sleeping
Create image_to_text_blip.py
Browse files- image_to_text_blip.py +32 -0
image_to_text_blip.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
2 |
+
from PIL import Image
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load BLIP model and processor
|
7 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
8 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
|
9 |
+
model.eval()
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
model.to(device)
|
12 |
+
|
13 |
+
# Inference function
|
14 |
+
def generate_caption(image):
|
15 |
+
if image.mode != "RGB":
|
16 |
+
image = image.convert("RGB")
|
17 |
+
|
18 |
+
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
|
19 |
+
output = model.generate(**inputs, max_new_tokens=50)
|
20 |
+
caption = processor.decode(output[0], skip_special_tokens=True)
|
21 |
+
return caption
|
22 |
+
|
23 |
+
# Gradio interface
|
24 |
+
iface = gr.Interface(
|
25 |
+
fn=generate_caption,
|
26 |
+
inputs=gr.Image(type="pil"),
|
27 |
+
outputs="text",
|
28 |
+
title="Construction Site Image-to-Text Generator",
|
29 |
+
description="Upload a site photo. The model will detect and describe construction activities."
|
30 |
+
)
|
31 |
+
|
32 |
+
iface.launch()
|