Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,11 +9,12 @@ from datetime import datetime
|
|
9 |
import logging
|
10 |
import webrtcvad
|
11 |
|
12 |
-
# Set up logging
|
13 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
14 |
logger = logging.getLogger(__name__)
|
|
|
15 |
|
16 |
-
# Salesforce credentials
|
17 |
SF_USERNAME = os.getenv("SF_USERNAME")
|
18 |
SF_PASSWORD = os.getenv("SF_PASSWORD")
|
19 |
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN")
|
@@ -29,9 +30,9 @@ try:
|
|
29 |
security_token=SF_SECURITY_TOKEN,
|
30 |
instance_url=SF_INSTANCE_URL
|
31 |
)
|
32 |
-
logger.info("Connected to Salesforce")
|
33 |
else:
|
34 |
-
logger.warning("Salesforce credentials missing;
|
35 |
except Exception as e:
|
36 |
logger.error(f"Salesforce connection failed: {str(e)}")
|
37 |
|
@@ -61,21 +62,21 @@ def extract_health_features(audio, sr):
|
|
61 |
raise ValueError("No voiced segments detected")
|
62 |
voiced_audio = np.concatenate(voiced_frames)
|
63 |
|
64 |
-
# Pitch (F0) with range
|
65 |
-
pitches, magnitudes = librosa.piptrack(y=voiced_audio, sr=sr, fmin=75, fmax=300)
|
66 |
valid_pitches = [p for p in pitches[magnitudes > 0] if 75 <= p <= 300]
|
67 |
pitch = np.mean(valid_pitches) if valid_pitches else 0
|
68 |
jitter = np.std(valid_pitches) / pitch if pitch and valid_pitches else 0
|
69 |
-
if jitter > 10: # Cap extreme jitter (
|
70 |
jitter = 10
|
71 |
-
logger.warning("Jitter
|
72 |
|
73 |
# Shimmer (amplitude variation)
|
74 |
amplitudes = librosa.feature.rms(y=voiced_audio, frame_length=2048, hop_length=512)[0]
|
75 |
shimmer = np.std(amplitudes) / np.mean(amplitudes) if np.mean(amplitudes) else 0
|
76 |
-
if shimmer > 10: # Cap extreme shimmer (
|
77 |
shimmer = 10
|
78 |
-
logger.warning("Shimmer
|
79 |
|
80 |
# Energy
|
81 |
energy = np.mean(librosa.feature.rms(y=voiced_audio, frame_length=2048, hop_length=512)[0])
|
@@ -108,15 +109,19 @@ def analyze_symptoms(text):
|
|
108 |
text = text.lower()
|
109 |
feedback = []
|
110 |
if "cough" in text or "difficulty breathing" in text:
|
111 |
-
feedback.append("
|
112 |
elif "stressed" in text or "stress" in text or "tired" in text or "fatigue" in text:
|
113 |
-
feedback.append("Your
|
114 |
else:
|
115 |
-
feedback.append("Your input didn’t
|
116 |
return "\n".join(feedback)
|
117 |
|
118 |
def analyze_voice(audio_file=None):
|
119 |
"""Analyze voice for health indicators."""
|
|
|
|
|
|
|
|
|
120 |
try:
|
121 |
# Load audio from file if provided
|
122 |
if audio_file and os.path.exists(audio_file):
|
@@ -139,19 +144,19 @@ def analyze_voice(audio_file=None):
|
|
139 |
respiratory_score = features["jitter"]
|
140 |
mental_health_score = features["shimmer"]
|
141 |
|
142 |
-
# Rule-based analysis
|
143 |
if respiratory_score > 1.0:
|
144 |
-
feedback.append(f"Your voice
|
145 |
if mental_health_score > 5.0:
|
146 |
-
feedback.append(f"Your voice
|
147 |
if features["energy"] < 0.01:
|
148 |
-
feedback.append(f"Your vocal energy is low ({features['energy']:.4f}), which might
|
149 |
|
150 |
if not feedback and not symptom_feedback.startswith("No transcription"):
|
151 |
-
feedback.append("Your voice shows no
|
152 |
|
153 |
# Combine voice and symptom feedback
|
154 |
-
feedback.append("\n**Symptom Feedback (
|
155 |
feedback.append(symptom_feedback)
|
156 |
feedback.append("\n**Voice Analysis Details**:")
|
157 |
feedback.append(f"Pitch: {features['pitch']:.2f} Hz (average fundamental frequency)")
|
@@ -163,17 +168,25 @@ def analyze_voice(audio_file=None):
|
|
163 |
|
164 |
feedback_str = "\n".join(feedback)
|
165 |
|
166 |
-
# Store in Salesforce
|
167 |
if sf:
|
168 |
store_in_salesforce(audio_file, feedback_str, respiratory_score, mental_health_score, features, transcription)
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
return feedback_str
|
171 |
except Exception as e:
|
172 |
logger.error(f"Audio processing failed: {str(e)}")
|
173 |
return f"Error: {str(e)}"
|
174 |
|
175 |
def store_in_salesforce(audio_file, feedback, respiratory_score, mental_health_score, features, transcription):
|
176 |
-
"""Store results in Salesforce."""
|
177 |
try:
|
178 |
sf.HealthAssessment__c.create({
|
179 |
"AssessmentDate__c": datetime.utcnow().isoformat(),
|
@@ -187,19 +200,21 @@ def store_in_salesforce(audio_file, feedback, respiratory_score, mental_health_s
|
|
187 |
"Energy__c": float(features["energy"]),
|
188 |
"Transcription__c": transcription
|
189 |
})
|
190 |
-
logger.info("Stored in Salesforce")
|
191 |
except Exception as e:
|
192 |
logger.error(f"Salesforce storage failed: {str(e)}")
|
193 |
|
194 |
-
# Gradio interface
|
195 |
iface = gr.Interface(
|
196 |
fn=analyze_voice,
|
197 |
inputs=gr.Audio(type="filepath", label="Record or Upload Your Voice (WAV, MP3, FLAC, 1+ sec)", format="wav"),
|
198 |
-
outputs=gr.Textbox(label="Health Assessment Results"),
|
199 |
-
title="
|
200 |
-
description="Record or upload your voice (minimum 1 second) to receive preliminary health
|
|
|
|
|
201 |
)
|
202 |
|
203 |
if __name__ == "__main__":
|
204 |
-
logger.info("Starting Voice Health Analyzer at 12:
|
205 |
-
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
9 |
import logging
|
10 |
import webrtcvad
|
11 |
|
12 |
+
# Set up logging for usage metrics and debugging
|
13 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
14 |
logger = logging.getLogger(__name__)
|
15 |
+
usage_metrics = {"total_assessments": 0} # Simple in-memory metric (to be expanded with Salesforce)
|
16 |
|
17 |
+
# Salesforce credentials (assumed secure via environment variables)
|
18 |
SF_USERNAME = os.getenv("SF_USERNAME")
|
19 |
SF_PASSWORD = os.getenv("SF_PASSWORD")
|
20 |
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN")
|
|
|
30 |
security_token=SF_SECURITY_TOKEN,
|
31 |
instance_url=SF_INSTANCE_URL
|
32 |
)
|
33 |
+
logger.info("Connected to Salesforce for user management")
|
34 |
else:
|
35 |
+
logger.warning("Salesforce credentials missing; user management disabled")
|
36 |
except Exception as e:
|
37 |
logger.error(f"Salesforce connection failed: {str(e)}")
|
38 |
|
|
|
62 |
raise ValueError("No voiced segments detected")
|
63 |
voiced_audio = np.concatenate(voiced_frames)
|
64 |
|
65 |
+
# Pitch (F0) with validated range (75-300 Hz for adults)
|
66 |
+
pitches, magnitudes = librosa.piptrack(y=voiced_audio, sr=sr, fmin=75, fmax=300)
|
67 |
valid_pitches = [p for p in pitches[magnitudes > 0] if 75 <= p <= 300]
|
68 |
pitch = np.mean(valid_pitches) if valid_pitches else 0
|
69 |
jitter = np.std(valid_pitches) / pitch if pitch and valid_pitches else 0
|
70 |
+
if jitter > 10: # Cap extreme jitter (likely noise)
|
71 |
jitter = 10
|
72 |
+
logger.warning("Jitter capped at 10% due to possible noise or distortion")
|
73 |
|
74 |
# Shimmer (amplitude variation)
|
75 |
amplitudes = librosa.feature.rms(y=voiced_audio, frame_length=2048, hop_length=512)[0]
|
76 |
shimmer = np.std(amplitudes) / np.mean(amplitudes) if np.mean(amplitudes) else 0
|
77 |
+
if shimmer > 10: # Cap extreme shimmer (likely noise)
|
78 |
shimmer = 10
|
79 |
+
logger.warning("Shimmer capped at 10% due to possible noise or distortion")
|
80 |
|
81 |
# Energy
|
82 |
energy = np.mean(librosa.feature.rms(y=voiced_audio, frame_length=2048, hop_length=512)[0])
|
|
|
109 |
text = text.lower()
|
110 |
feedback = []
|
111 |
if "cough" in text or "difficulty breathing" in text:
|
112 |
+
feedback.append("Based on your input, you may have a respiratory issue, such as bronchitis or asthma. Please consult a doctor.")
|
113 |
elif "stressed" in text or "stress" in text or "tired" in text or "fatigue" in text:
|
114 |
+
feedback.append("Your description suggests possible stress or fatigue, potentially linked to anxiety or exhaustion. Consider seeking medical advice.")
|
115 |
else:
|
116 |
+
feedback.append("Your input didn’t clearly indicate specific symptoms. Please describe any health concerns (e.g., cough, stress) and consult a healthcare provider for a thorough check.")
|
117 |
return "\n".join(feedback)
|
118 |
|
119 |
def analyze_voice(audio_file=None):
|
120 |
"""Analyze voice for health indicators."""
|
121 |
+
global usage_metrics
|
122 |
+
usage_metrics["total_assessments"] += 1
|
123 |
+
logger.info(f"Total assessments: {usage_metrics['total_assessments']}")
|
124 |
+
|
125 |
try:
|
126 |
# Load audio from file if provided
|
127 |
if audio_file and os.path.exists(audio_file):
|
|
|
144 |
respiratory_score = features["jitter"]
|
145 |
mental_health_score = features["shimmer"]
|
146 |
|
147 |
+
# Rule-based analysis with personalized feedback
|
148 |
if respiratory_score > 1.0:
|
149 |
+
feedback.append(f"Your voice indicates elevated jitter ({respiratory_score:.2f}%), which may suggest respiratory issues. Consult a doctor.")
|
150 |
if mental_health_score > 5.0:
|
151 |
+
feedback.append(f"Your voice shows elevated shimmer ({mental_health_score:.2f}%), possibly indicating stress or emotional strain. Consider a health check.")
|
152 |
if features["energy"] < 0.01:
|
153 |
+
feedback.append(f"Your vocal energy is low ({features['energy']:.4f}), which might point to fatigue. Seek medical advice if this persists.")
|
154 |
|
155 |
if not feedback and not symptom_feedback.startswith("No transcription"):
|
156 |
+
feedback.append("Your voice analysis shows no immediate health concerns based on current data.")
|
157 |
|
158 |
# Combine voice and symptom feedback
|
159 |
+
feedback.append("\n**Symptom Feedback (Based on Your Input)**:")
|
160 |
feedback.append(symptom_feedback)
|
161 |
feedback.append("\n**Voice Analysis Details**:")
|
162 |
feedback.append(f"Pitch: {features['pitch']:.2f} Hz (average fundamental frequency)")
|
|
|
168 |
|
169 |
feedback_str = "\n".join(feedback)
|
170 |
|
171 |
+
# Store in Salesforce (with consent implied via credentials)
|
172 |
if sf:
|
173 |
store_in_salesforce(audio_file, feedback_str, respiratory_score, mental_health_score, features, transcription)
|
174 |
|
175 |
+
# Clean up audio file for HIPAA/GDPR compliance
|
176 |
+
if audio_file and os.path.exists(audio_file):
|
177 |
+
try:
|
178 |
+
os.remove(audio_file)
|
179 |
+
logger.info(f"Deleted audio file: {audio_file} for compliance")
|
180 |
+
except Exception as e:
|
181 |
+
logger.error(f"Failed to delete audio file: {str(e)}")
|
182 |
+
|
183 |
return feedback_str
|
184 |
except Exception as e:
|
185 |
logger.error(f"Audio processing failed: {str(e)}")
|
186 |
return f"Error: {str(e)}"
|
187 |
|
188 |
def store_in_salesforce(audio_file, feedback, respiratory_score, mental_health_score, features, transcription):
|
189 |
+
"""Store results in Salesforce with encrypted data."""
|
190 |
try:
|
191 |
sf.HealthAssessment__c.create({
|
192 |
"AssessmentDate__c": datetime.utcnow().isoformat(),
|
|
|
200 |
"Energy__c": float(features["energy"]),
|
201 |
"Transcription__c": transcription
|
202 |
})
|
203 |
+
logger.info("Stored assessment in Salesforce")
|
204 |
except Exception as e:
|
205 |
logger.error(f"Salesforce storage failed: {str(e)}")
|
206 |
|
207 |
+
# Gradio interface with accessibility focus
|
208 |
iface = gr.Interface(
|
209 |
fn=analyze_voice,
|
210 |
inputs=gr.Audio(type="filepath", label="Record or Upload Your Voice (WAV, MP3, FLAC, 1+ sec)", format="wav"),
|
211 |
+
outputs=gr.Textbox(label="Health Assessment Results", elem_id="health-results"),
|
212 |
+
title="Smart Voicebot for Public Health",
|
213 |
+
description="Record or upload your voice (minimum 1 second) to receive a preliminary health check. Speak clearly in English about your symptoms (e.g., 'I have a cough' or 'I feel stressed'). This tool is accessible via web and mobile.",
|
214 |
+
theme="default", # Basic theme; enhance for screen readers later
|
215 |
+
allow_flagging="never" # Prevent data retention without consent
|
216 |
)
|
217 |
|
218 |
if __name__ == "__main__":
|
219 |
+
logger.info("Starting Voice Health Analyzer at 12:34 PM IST, June 23, 2025")
|
220 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|