File size: 4,761 Bytes
3e15bc2
 
 
 
 
 
 
 
 
 
 
77bcbcd
 
 
 
 
 
 
 
3e15bc2
 
 
 
 
 
 
 
77bcbcd
 
 
 
 
 
 
3e15bc2
 
 
77bcbcd
 
 
 
 
 
 
 
 
 
 
 
 
 
3e15bc2
 
 
77bcbcd
 
 
 
 
 
 
3e15bc2
 
 
77bcbcd
 
988f341
77bcbcd
 
 
 
 
 
 
 
 
 
 
 
3e15bc2
 
 
77bcbcd
3e15bc2
 
77bcbcd
 
 
3e15bc2
 
 
 
77bcbcd
 
 
3e15bc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
from transformers import pipeline
from gtts import gTTS
from simple_salesforce import Salesforce
import soundfile as sf

# Step 1: Hugging Face Speech-to-Text Pipeline Setup
speech_to_text = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-large-960h")

# Step 2: Convert Speech to Text
def convert_speech_to_text(audio_file):
    """ Convert audio file to text """
    try:
        with open(audio_file, "rb") as audio:
            transcription = speech_to_text(audio.read())
            return transcription['text']
    except Exception as e:
        print(f"Error in converting speech to text: {e}")
        return None

# Step 3: Analyze the text for health-related indicators (e.g., respiratory issues)
health_assessment = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")

# Define possible health conditions
health_conditions = ["respiratory issues", "mental health conditions", "fever", "asthma", "coughing"]

def analyze_health_condition(text):
    """ Analyze the health condition based on transcribed text """
    try:
        result = health_assessment(text, candidate_labels=health_conditions)
        return result
    except Exception as e:
        print(f"Error in analyzing health condition: {e}")
        return None

# Step 4: Provide Feedback to the User Based on Health Assessment
def provide_feedback(health_assessment_result):
    """ Provide feedback based on health assessment """
    if health_assessment_result is None:
        return "Error in analyzing health, please try again later."

    try:
        if 'respiratory issues' in health_assessment_result['labels']:
            return "Possible respiratory issue detected, consult a doctor."
        elif 'mental health conditions' in health_assessment_result['labels']:
            return "Possible mental health concern detected, seek professional help."
        else:
            return "No significant health concerns detected. Keep monitoring your health."
    except Exception as e:
        print(f"Error in providing feedback: {e}")
        return "An error occurred while processing your health assessment."

# Step 5: Convert Text Feedback to Speech (Text-to-Speech)
def text_to_speech(text):
    """ Convert text feedback to speech """
    try:
        tts = gTTS(text, lang='en')
        tts.save("response.mp3")
        os.system("start response.mp3")  # Play the audio file (Windows-specific command)
    except Exception as e:
        print(f"Error in text to speech: {e}")

# Step 6: Integration with Salesforce for Storing User Data
def store_user_data_to_salesforce(user_first_name, user_last_name, user_email, feedback):
    """ Store user data to Salesforce """
    try:
        # Salesforce login credentials
        sf = Salesforce(username='your_username', password='your_password', security_token='your_token')

        # Create a new record for the user interaction in Salesforce
        sf.Contact.create({
            'FirstName': user_first_name,
            'LastName': user_last_name,
            'Email': user_email,
            'VoiceAnalysisResult': feedback,
        })
        print(f"Data stored successfully for {user_first_name} {user_last_name}.")
    except Exception as e:
        print(f"Error in storing data to Salesforce: {e}")

# Step 7: Main Function to Process User's Voice Input
def analyze_voice_health(audio_file, user_first_name, user_last_name, user_email):
    """ Main function to analyze voice and provide feedback """
    # Step 1: Convert speech to text
    text = convert_speech_to_text(audio_file)
    if text is None:
        return "Error in transcribing the audio."

    print(f"User's Speech Transcription: {text}")

    # Step 2: Analyze the transcribed text for health conditions
    health_feedback = analyze_health_condition(text)
    if health_feedback is None:
        return "Error in analyzing health conditions."

    print(f"Health assessment: {health_feedback}")

    # Step 3: Provide feedback based on the health analysis
    feedback = provide_feedback(health_feedback)
    print(f"Feedback: {feedback}")

    # Step 4: Convert the feedback to speech for accessibility
    text_to_speech(feedback)

    # Step 5: Store the user interaction data in Salesforce (optional)
    store_user_data_to_salesforce(user_first_name, user_last_name, user_email, feedback)
    
    return feedback


# Example Usage:
# Assuming you have a user's voice recorded in "user_voice.wav"
audio_file = "user_voice.wav"
user_first_name = "John"
user_last_name = "Doe"
user_email = "[email protected]"

# Analyze the user's voice and provide feedback
feedback = analyze_voice_health(audio_file, user_first_name, user_last_name, user_email)
print(f"Final Feedback: {feedback}")