File size: 13,153 Bytes
2e49337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from simple_salesforce import Salesforce
import os
import base64
import datetime
from dotenv import load_dotenv
from fpdf import FPDF
import shutil
import html
import io
import matplotlib.pyplot as plt
import numpy as np

# Load environment variables
load_dotenv()

# Required env vars check
required_env_vars = ['SF_USERNAME', 'SF_PASSWORD', 'SF_SECURITY_TOKEN']
missing_vars = [var for var in required_env_vars if not os.getenv(var)]
if missing_vars:
    raise EnvironmentError(f"Missing required environment variables: {missing_vars}")

# Load model and tokenizer
model_name = "distilgpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True)

if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
model.config.pad_token_id = tokenizer.pad_token_id

# Function to generate progress chart
def show_dashboard_chart(start_date, end_date, tasks_completed):
    completed_tasks = list(tasks_completed.values())
    labels = list(tasks_completed.keys())
    remaining_tasks = [5 - task for task in completed_tasks]  # Assuming 5 tasks per date

    # Create the bar chart with completed and remaining tasks
    fig, ax = plt.subplots(figsize=(10, 6))
    ax.bar(labels, completed_tasks, color='green', label="Completed")
    ax.bar(labels, remaining_tasks, bottom=completed_tasks, color='gray', label="Remaining")

    ax.set_xlabel("Dates")
    ax.set_ylabel("Task Progress")
    ax.set_title(f"Task Completion Progress from {start_date} to {end_date}")
    ax.legend()
    plt.xticks(rotation=45)
    chart_image = io.BytesIO()
    plt.savefig(chart_image, format='png')
    chart_image.seek(0)
    return chart_image

# Function to get the data from Salesforce
def get_dashboard_data_from_salesforce(supervisor_name, project_id):
    try:
        sf = Salesforce(
            username=os.getenv('SF_USERNAME'),
            password=os.getenv('SF_PASSWORD'),
            security_token=os.getenv('SF_SECURITY_TOKEN'),
            domain=os.getenv('SF_DOMAIN', 'login')
        )

        # Get the start and end date from Salesforce
        query = sf.query(f"SELECT Start_Date__c, End_Date__c FROM Project__c WHERE Name = '{project_id}' LIMIT 1")
        if query['totalSize'] == 0:
            return "", "", None, "Project not found"

        start_date_str = query['records'][0]['Start_Date__c']
        end_date_str = query['records'][0]['End_Date__c']

        # Convert the string dates to datetime objects
        start_date = datetime.datetime.strptime(start_date_str, "%Y-%m-%d")
        end_date = datetime.datetime.strptime(end_date_str, "%Y-%m-%d")

        # Generate task dates and simulated completion data
        task_dates = [start_date + datetime.timedelta(days=i) for i in range((end_date - start_date).days + 1)]
        tasks_completed = {str(task_dates[i].date()): np.random.randint(1, 6) for i in range(len(task_dates))}

        chart_image = show_dashboard_chart(start_date, end_date, tasks_completed)
        return start_date, end_date, chart_image, f"Project {project_id} Task Progress"
    except Exception as e:
        return "", "", None, f"Error: {str(e)}"

# Clean text for PDF generation
def clean_text_for_pdf(text):
    return html.unescape(text).encode('latin-1', 'replace').decode('latin-1')

# Function to save report as PDF
def save_report_as_pdf(role, supervisor_name, project_id, checklist, suggestions):
    now = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
    filename = f"report_{supervisor_name}_{project_id}_{now}.pdf"
    file_path = f"./reports/{filename}"
    os.makedirs("reports", exist_ok=True)

    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", 'B', 14)
    pdf.cell(200, 10, txt="Supervisor Daily Report", ln=True, align="C")
    pdf.set_font("Arial", size=12)
    pdf.cell(200, 10, txt=clean_text_for_pdf(f"Role: {role}"), ln=True)
    pdf.cell(200, 10, txt=clean_text_for_pdf(f"Supervisor: {supervisor_name}"), ln=True)
    pdf.cell(200, 10, txt=clean_text_for_pdf(f"Project ID: {project_id}"), ln=True)
    pdf.ln(5)
    pdf.set_font("Arial", 'B', 12)
    pdf.cell(200, 10, txt="Daily Checklist", ln=True)
    pdf.set_font("Arial", size=12)
    for line in checklist.split("\n"):
        pdf.multi_cell(0, 10, clean_text_for_pdf(line))
    pdf.ln(5)
    pdf.set_font("Arial", 'B', 12)
    pdf.cell(200, 10, txt="Focus Suggestions", ln=True)
    pdf.set_font("Arial", size=12)
    for line in suggestions.split("\n"):
        pdf.multi_cell(0, 10, clean_text_for_pdf(line))
    pdf.output(file_path)

    temp_pdf_path = "/tmp/" + os.path.basename(file_path)
    shutil.copy(file_path, temp_pdf_path)
    return temp_pdf_path, filename

# Function to get roles from Salesforce
def get_roles_from_salesforce():
    try:
        sf = Salesforce(
            username=os.getenv('SF_USERNAME'),
            password=os.getenv('SF_PASSWORD'),
            security_token=os.getenv('SF_SECURITY_TOKEN'),
            domain=os.getenv('SF_DOMAIN', 'login')
        )
        result = sf.query("SELECT Role__c FROM Supervisor__c WHERE Role__c != NULL")
        return list(set(record['Role__c'] for record in result['records']))
    except Exception as e:
        return []

# Function to get supervisor names based on role
def get_supervisor_name_by_role(role):
    try:
        sf = Salesforce(
            username=os.getenv('SF_USERNAME'),
            password=os.getenv('SF_PASSWORD'),
            security_token=os.getenv('SF_SECURITY_TOKEN'),
            domain=os.getenv('SF_DOMAIN', 'login')
        )
        result = sf.query(f"SELECT Name FROM Supervisor__c WHERE Role__c = '{role}'")
        return [record['Name'] for record in result['records']]
    except Exception as e:
        return []

# Function to get the project name for a supervisor
def get_projects_for_supervisor(supervisor_name):
    try:
        sf = Salesforce(
            username=os.getenv('SF_USERNAME'),
            password=os.getenv('SF_PASSWORD'),
            security_token=os.getenv('SF_SECURITY_TOKEN'),
            domain=os.getenv('SF_DOMAIN', 'login')
        )
        result = sf.query(f"SELECT Id FROM Supervisor__c WHERE Name = '{supervisor_name}' LIMIT 1")
        if result['totalSize'] == 0:
            return ""
        supervisor_id = result['records'][0]['Id']
        project_result = sf.query(f"SELECT Name FROM Project__c WHERE Supervisor_ID__c = '{supervisor_id}' LIMIT 1")
        return project_result['records'][0]['Name'] if project_result['totalSize'] > 0 else ""
    except Exception as e:
        return ""

# Function to generate daily checklist and focus suggestions
def generate_checklist_and_suggestions(role, project_id, milestones, reflection):
    prompt = f"""
    You are a supervisor assistant. Given the role {role}, project {project_id}, milestones {milestones}, and reflection log {reflection}, generate:
    
    1. A Daily Checklist with clear and concise tasks.
    2. Focus Suggestions based on concerns or keywords from the reflection log.
    """
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(inputs['input_ids'], max_length=200, num_return_sequences=1)
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    # Split generated text into checklist and suggestions
    parts = generated_text.split("\n")
    checklist = "\n".join(parts[:len(parts)//2])
    suggestions = "\n".join(parts[len(parts)//2:])
    
    return checklist, suggestions

# Function to upload the report and create the Supervisor AI Coaching record in Salesforce
def upload_report_and_create_supervisor_ai_coaching(supervisor_name, project_id, checklist, suggestions, pdf_path, pdf_name):
    try:
        sf = Salesforce(
            username=os.getenv('SF_USERNAME'),
            password=os.getenv('SF_PASSWORD'),
            security_token=os.getenv('SF_SECURITY_TOKEN'),
            domain=os.getenv('SF_DOMAIN', 'login')
        )

        # Upload the PDF file to Salesforce as Content Version
        with open(pdf_path, "rb") as f:
            encoded = base64.b64encode(f.read()).decode()

        content = sf.ContentVersion.create({
            'Title': pdf_name,
            'PathOnClient': pdf_name,
            'VersionData': encoded
        })

        content_id = content['id']
        download_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/version/download/{content_id}"

        # Create a Supervisor AI Coaching record
        query = sf.query(f"SELECT Id FROM Supervisor__c WHERE Name = '{supervisor_name}' LIMIT 1")
        supervisor_id = query['records'][0]['Id'] if query['totalSize'] > 0 else None
        if not supervisor_id:
            return "Supervisor not found."

        project_query = sf.query(f"SELECT Id FROM Project__c WHERE Name = '{project_id}' LIMIT 1")
        project_id_sf = project_query['records'][0]['Id'] if project_query['totalSize'] > 0 else None
        if not project_id_sf:
            return "Project not found."

        # Create Supervisor AI Coaching record with all necessary fields
        sf.Supervisor_AI_Coaching__c.create({
            'Project_ID__c': project_id_sf,
            'Supervisor_ID__c': supervisor_id,
            'Daily_Checklist__c': checklist,
            'Suggested_Tips__c': suggestions,
            'Download_Link__c': download_url
        })

        return "Supervisor AI Coaching record created and report uploaded successfully."

    except Exception as e:
        return f"Error: {str(e)}"

# Gradio interface
def create_interface():
    roles = get_roles_from_salesforce()  # Get roles from Salesforce dynamically
    with gr.Blocks(theme="soft", css=".footer { display: none; }") as demo:
        gr.Markdown("## 🧠 AI-Powered Supervisor Assistant")

        with gr.Row():
            role = gr.Dropdown(choices=roles, label="Role")
            supervisor_name = gr.Dropdown(choices=[], label="Supervisor Name")
            project_id = gr.Textbox(label="Project ID", interactive=False)

        milestones = gr.Textbox(label="Milestones (comma-separated KPIs)")
        reflection = gr.Textbox(label="Reflection Log", lines=4)

        with gr.Row():
            generate = gr.Button("Generate")
            clear = gr.Button("Clear")
            refresh = gr.Button("πŸ”„ Refresh Roles")

        checklist_output = gr.Textbox(label="βœ… Daily Checklist")
        suggestions_output = gr.Textbox(label="πŸ’‘ Focus Suggestions")
        download_button = gr.File(label="⬇ Download Report")
        pdf_link = gr.HTML()

        role.change(fn=lambda r: gr.update(choices=get_supervisor_name_by_role(r)), inputs=role, outputs=supervisor_name)
        supervisor_name.change(fn=get_projects_for_supervisor, inputs=supervisor_name, outputs=project_id)

        def handle_generate(role, supervisor_name, project_id, milestones, reflection):
            checklist, suggestions = generate_checklist_and_suggestions(role, project_id, milestones, reflection)
            pdf_path, pdf_name = save_report_as_pdf(role, supervisor_name, project_id, checklist, suggestions)
            supervisor_ai_coaching_response = upload_report_and_create_supervisor_ai_coaching(supervisor_name, project_id, checklist, suggestions, pdf_path, pdf_name)
            return checklist, suggestions, pdf_path, pdf_name, supervisor_ai_coaching_response

        generate.click(fn=handle_generate,
                       inputs=[role, supervisor_name, project_id, milestones, reflection],
                       outputs=[checklist_output, suggestions_output, download_button, pdf_link, gr.HTML()])

        clear.click(fn=lambda: ("", "", "", "", ""),
                    inputs=None,
                    outputs=[role, supervisor_name, project_id, milestones, reflection])

        refresh.click(fn=lambda: gr.update(choices=get_roles_from_salesforce()), outputs=role)

        # Supervisor Dashboard Tab
        with gr.Tab("πŸ“Š Supervisor Dashboard"):
            dash_supervisor = gr.Textbox(label="Supervisor Name", placeholder="e.g., SUP-056")
            dash_project = gr.Textbox(label="Project ID", placeholder="e.g., PROJ-078")
            load_dash = gr.Button("πŸ“₯ Load Dashboard")
            dash_output = gr.HTML()

            def show_dashboard_html(sup_name, proj_id):
                start_date, end_date, chart_image, chart_title = get_dashboard_data_from_salesforce(sup_name, proj_id)
                if chart_image:
                    chart_html = f"<img src='data:image/png;base64,{base64.b64encode(chart_image.read()).decode()}' />"
                    return f"<h3>{chart_title}</h3><p>From {start_date} to {end_date}</p>{chart_html}"
                else:
                    return f"Error: {chart_title}"

            load_dash.click(fn=show_dashboard_html, inputs=[dash_supervisor, dash_project], outputs=dash_output)

    return demo

if __name__ == "__main__":
    app = create_interface()
    app.launch()