Spaces:
Sleeping
Sleeping
File size: 13,153 Bytes
2e49337 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from simple_salesforce import Salesforce
import os
import base64
import datetime
from dotenv import load_dotenv
from fpdf import FPDF
import shutil
import html
import io
import matplotlib.pyplot as plt
import numpy as np
# Load environment variables
load_dotenv()
# Required env vars check
required_env_vars = ['SF_USERNAME', 'SF_PASSWORD', 'SF_SECURITY_TOKEN']
missing_vars = [var for var in required_env_vars if not os.getenv(var)]
if missing_vars:
raise EnvironmentError(f"Missing required environment variables: {missing_vars}")
# Load model and tokenizer
model_name = "distilgpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
model.config.pad_token_id = tokenizer.pad_token_id
# Function to generate progress chart
def show_dashboard_chart(start_date, end_date, tasks_completed):
completed_tasks = list(tasks_completed.values())
labels = list(tasks_completed.keys())
remaining_tasks = [5 - task for task in completed_tasks] # Assuming 5 tasks per date
# Create the bar chart with completed and remaining tasks
fig, ax = plt.subplots(figsize=(10, 6))
ax.bar(labels, completed_tasks, color='green', label="Completed")
ax.bar(labels, remaining_tasks, bottom=completed_tasks, color='gray', label="Remaining")
ax.set_xlabel("Dates")
ax.set_ylabel("Task Progress")
ax.set_title(f"Task Completion Progress from {start_date} to {end_date}")
ax.legend()
plt.xticks(rotation=45)
chart_image = io.BytesIO()
plt.savefig(chart_image, format='png')
chart_image.seek(0)
return chart_image
# Function to get the data from Salesforce
def get_dashboard_data_from_salesforce(supervisor_name, project_id):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
# Get the start and end date from Salesforce
query = sf.query(f"SELECT Start_Date__c, End_Date__c FROM Project__c WHERE Name = '{project_id}' LIMIT 1")
if query['totalSize'] == 0:
return "", "", None, "Project not found"
start_date_str = query['records'][0]['Start_Date__c']
end_date_str = query['records'][0]['End_Date__c']
# Convert the string dates to datetime objects
start_date = datetime.datetime.strptime(start_date_str, "%Y-%m-%d")
end_date = datetime.datetime.strptime(end_date_str, "%Y-%m-%d")
# Generate task dates and simulated completion data
task_dates = [start_date + datetime.timedelta(days=i) for i in range((end_date - start_date).days + 1)]
tasks_completed = {str(task_dates[i].date()): np.random.randint(1, 6) for i in range(len(task_dates))}
chart_image = show_dashboard_chart(start_date, end_date, tasks_completed)
return start_date, end_date, chart_image, f"Project {project_id} Task Progress"
except Exception as e:
return "", "", None, f"Error: {str(e)}"
# Clean text for PDF generation
def clean_text_for_pdf(text):
return html.unescape(text).encode('latin-1', 'replace').decode('latin-1')
# Function to save report as PDF
def save_report_as_pdf(role, supervisor_name, project_id, checklist, suggestions):
now = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
filename = f"report_{supervisor_name}_{project_id}_{now}.pdf"
file_path = f"./reports/{filename}"
os.makedirs("reports", exist_ok=True)
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", 'B', 14)
pdf.cell(200, 10, txt="Supervisor Daily Report", ln=True, align="C")
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=clean_text_for_pdf(f"Role: {role}"), ln=True)
pdf.cell(200, 10, txt=clean_text_for_pdf(f"Supervisor: {supervisor_name}"), ln=True)
pdf.cell(200, 10, txt=clean_text_for_pdf(f"Project ID: {project_id}"), ln=True)
pdf.ln(5)
pdf.set_font("Arial", 'B', 12)
pdf.cell(200, 10, txt="Daily Checklist", ln=True)
pdf.set_font("Arial", size=12)
for line in checklist.split("\n"):
pdf.multi_cell(0, 10, clean_text_for_pdf(line))
pdf.ln(5)
pdf.set_font("Arial", 'B', 12)
pdf.cell(200, 10, txt="Focus Suggestions", ln=True)
pdf.set_font("Arial", size=12)
for line in suggestions.split("\n"):
pdf.multi_cell(0, 10, clean_text_for_pdf(line))
pdf.output(file_path)
temp_pdf_path = "/tmp/" + os.path.basename(file_path)
shutil.copy(file_path, temp_pdf_path)
return temp_pdf_path, filename
# Function to get roles from Salesforce
def get_roles_from_salesforce():
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
result = sf.query("SELECT Role__c FROM Supervisor__c WHERE Role__c != NULL")
return list(set(record['Role__c'] for record in result['records']))
except Exception as e:
return []
# Function to get supervisor names based on role
def get_supervisor_name_by_role(role):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
result = sf.query(f"SELECT Name FROM Supervisor__c WHERE Role__c = '{role}'")
return [record['Name'] for record in result['records']]
except Exception as e:
return []
# Function to get the project name for a supervisor
def get_projects_for_supervisor(supervisor_name):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
result = sf.query(f"SELECT Id FROM Supervisor__c WHERE Name = '{supervisor_name}' LIMIT 1")
if result['totalSize'] == 0:
return ""
supervisor_id = result['records'][0]['Id']
project_result = sf.query(f"SELECT Name FROM Project__c WHERE Supervisor_ID__c = '{supervisor_id}' LIMIT 1")
return project_result['records'][0]['Name'] if project_result['totalSize'] > 0 else ""
except Exception as e:
return ""
# Function to generate daily checklist and focus suggestions
def generate_checklist_and_suggestions(role, project_id, milestones, reflection):
prompt = f"""
You are a supervisor assistant. Given the role {role}, project {project_id}, milestones {milestones}, and reflection log {reflection}, generate:
1. A Daily Checklist with clear and concise tasks.
2. Focus Suggestions based on concerns or keywords from the reflection log.
"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(inputs['input_ids'], max_length=200, num_return_sequences=1)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Split generated text into checklist and suggestions
parts = generated_text.split("\n")
checklist = "\n".join(parts[:len(parts)//2])
suggestions = "\n".join(parts[len(parts)//2:])
return checklist, suggestions
# Function to upload the report and create the Supervisor AI Coaching record in Salesforce
def upload_report_and_create_supervisor_ai_coaching(supervisor_name, project_id, checklist, suggestions, pdf_path, pdf_name):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
# Upload the PDF file to Salesforce as Content Version
with open(pdf_path, "rb") as f:
encoded = base64.b64encode(f.read()).decode()
content = sf.ContentVersion.create({
'Title': pdf_name,
'PathOnClient': pdf_name,
'VersionData': encoded
})
content_id = content['id']
download_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/version/download/{content_id}"
# Create a Supervisor AI Coaching record
query = sf.query(f"SELECT Id FROM Supervisor__c WHERE Name = '{supervisor_name}' LIMIT 1")
supervisor_id = query['records'][0]['Id'] if query['totalSize'] > 0 else None
if not supervisor_id:
return "Supervisor not found."
project_query = sf.query(f"SELECT Id FROM Project__c WHERE Name = '{project_id}' LIMIT 1")
project_id_sf = project_query['records'][0]['Id'] if project_query['totalSize'] > 0 else None
if not project_id_sf:
return "Project not found."
# Create Supervisor AI Coaching record with all necessary fields
sf.Supervisor_AI_Coaching__c.create({
'Project_ID__c': project_id_sf,
'Supervisor_ID__c': supervisor_id,
'Daily_Checklist__c': checklist,
'Suggested_Tips__c': suggestions,
'Download_Link__c': download_url
})
return "Supervisor AI Coaching record created and report uploaded successfully."
except Exception as e:
return f"Error: {str(e)}"
# Gradio interface
def create_interface():
roles = get_roles_from_salesforce() # Get roles from Salesforce dynamically
with gr.Blocks(theme="soft", css=".footer { display: none; }") as demo:
gr.Markdown("## π§ AI-Powered Supervisor Assistant")
with gr.Row():
role = gr.Dropdown(choices=roles, label="Role")
supervisor_name = gr.Dropdown(choices=[], label="Supervisor Name")
project_id = gr.Textbox(label="Project ID", interactive=False)
milestones = gr.Textbox(label="Milestones (comma-separated KPIs)")
reflection = gr.Textbox(label="Reflection Log", lines=4)
with gr.Row():
generate = gr.Button("Generate")
clear = gr.Button("Clear")
refresh = gr.Button("π Refresh Roles")
checklist_output = gr.Textbox(label="β
Daily Checklist")
suggestions_output = gr.Textbox(label="π‘ Focus Suggestions")
download_button = gr.File(label="β¬ Download Report")
pdf_link = gr.HTML()
role.change(fn=lambda r: gr.update(choices=get_supervisor_name_by_role(r)), inputs=role, outputs=supervisor_name)
supervisor_name.change(fn=get_projects_for_supervisor, inputs=supervisor_name, outputs=project_id)
def handle_generate(role, supervisor_name, project_id, milestones, reflection):
checklist, suggestions = generate_checklist_and_suggestions(role, project_id, milestones, reflection)
pdf_path, pdf_name = save_report_as_pdf(role, supervisor_name, project_id, checklist, suggestions)
supervisor_ai_coaching_response = upload_report_and_create_supervisor_ai_coaching(supervisor_name, project_id, checklist, suggestions, pdf_path, pdf_name)
return checklist, suggestions, pdf_path, pdf_name, supervisor_ai_coaching_response
generate.click(fn=handle_generate,
inputs=[role, supervisor_name, project_id, milestones, reflection],
outputs=[checklist_output, suggestions_output, download_button, pdf_link, gr.HTML()])
clear.click(fn=lambda: ("", "", "", "", ""),
inputs=None,
outputs=[role, supervisor_name, project_id, milestones, reflection])
refresh.click(fn=lambda: gr.update(choices=get_roles_from_salesforce()), outputs=role)
# Supervisor Dashboard Tab
with gr.Tab("π Supervisor Dashboard"):
dash_supervisor = gr.Textbox(label="Supervisor Name", placeholder="e.g., SUP-056")
dash_project = gr.Textbox(label="Project ID", placeholder="e.g., PROJ-078")
load_dash = gr.Button("π₯ Load Dashboard")
dash_output = gr.HTML()
def show_dashboard_html(sup_name, proj_id):
start_date, end_date, chart_image, chart_title = get_dashboard_data_from_salesforce(sup_name, proj_id)
if chart_image:
chart_html = f"<img src='data:image/png;base64,{base64.b64encode(chart_image.read()).decode()}' />"
return f"<h3>{chart_title}</h3><p>From {start_date} to {end_date}</p>{chart_html}"
else:
return f"Error: {chart_title}"
load_dash.click(fn=show_dashboard_html, inputs=[dash_supervisor, dash_project], outputs=dash_output)
return demo
if __name__ == "__main__":
app = create_interface()
app.launch()
|