File size: 9,649 Bytes
736dc08
c7b5970
 
a18dc09
c7b5970
2fe12f1
 
86b5f4c
2fe12f1
736dc08
c7b5970
76f8605
 
c7b5970
 
 
 
 
 
2fe12f1
 
c7b5970
 
 
 
 
 
 
 
2fe12f1
c7b5970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fe12f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7b5970
76f8605
 
c7b5970
 
 
 
76f8605
c7b5970
 
76f8605
c7b5970
2fe12f1
76f8605
c7b5970
 
 
 
 
 
 
 
 
 
 
2fe12f1
c7b5970
a18dc09
c7b5970
76f8605
 
c7b5970
 
 
 
76f8605
2fe12f1
 
c7b5970
2fe12f1
c7b5970
 
12aab4e
c7b5970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fe12f1
c7b5970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fe12f1
c7b5970
2fe12f1
 
 
 
 
 
c7b5970
 
 
736dc08
76f8605
749a542
 
e06a887
736dc08
749a542
 
 
e06a887
2fe12f1
 
e06a887
736dc08
749a542
 
 
e06a887
749a542
 
e06a887
12aab4e
 
e06a887
 
 
 
 
 
 
 
12aab4e
e06a887
736dc08
 
 
76f8605
cc63678
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from simple_salesforce import Salesforce
import os
import base64
import datetime
from dotenv import load_dotenv
from fpdf import FPDF

# Load environment variables
load_dotenv()

# Required env vars check
required_env_vars = ['SF_USERNAME', 'SF_PASSWORD', 'SF_SECURITY_TOKEN']
missing_vars = [var for var in required_env_vars if not os.getenv(var)]
if missing_vars:
    raise EnvironmentError(f"Missing required environment variables: {missing_vars}")

# Load model and tokenizer
model_name = "distilgpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True)

if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
model.config.pad_token_id = tokenizer.pad_token_id

# Prompt template
PROMPT_TEMPLATE = """You are an AI assistant for construction supervisors. Given the role, project, milestones, and a reflection log, generate:

1. A Daily Checklist with clear and concise tasks based on the role and milestones. 
   Split the checklist into day-by-day tasks for a specified time period (e.g., one week).
2. Focus Suggestions based on concerns or keywords in the reflection log. Provide at least 2 suggestions.

Inputs:
Role: {role}
Project ID: {project_id}
Milestones: {milestones}
Reflection Log: {reflection}

Output Format:
Checklist (Day-by-Day):
- Day 1: 
   - Task 1
   - Task 2
- Day 2: 
   - Task 1
   - Task 2
...
Suggestions:
- 
"""

# Save report as PDF
def save_report_as_pdf(role, supervisor_name, project_id, checklist, suggestions):
    now = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
    filename = f"report_{supervisor_name}_{project_id}_{now}.pdf"
    file_path = f"./reports/{filename}"
    os.makedirs("reports", exist_ok=True)

    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", size=12)
    pdf.set_font("Arial", 'B', 14)
    pdf.cell(200, 10, txt="Supervisor Daily Report", ln=True, align="C")
    pdf.set_font("Arial", size=12)
    pdf.cell(200, 10, txt=f"Role: {role}", ln=True)
    pdf.cell(200, 10, txt=f"Supervisor: {supervisor_name}", ln=True)
    pdf.cell(200, 10, txt=f"Project ID: {project_id}", ln=True)
    pdf.ln(5)
    pdf.set_font("Arial", 'B', 12)
    pdf.cell(200, 10, txt="Daily Checklist", ln=True)
    pdf.set_font("Arial", size=12)
    for line in checklist.split("\n"):
        pdf.multi_cell(0, 10, line)
    pdf.ln(5)
    pdf.set_font("Arial", 'B', 12)
    pdf.cell(200, 10, txt="Focus Suggestions", ln=True)
    pdf.set_font("Arial", size=12)
    for line in suggestions.split("\n"):
        pdf.multi_cell(0, 10, line)
    pdf.output(file_path)
    return file_path

# Upload to Salesforce and update record

def upload_pdf_to_salesforce_and_update_link(supervisor_name, project_id, pdf_path):
    try:
        sf = Salesforce(
            username=os.getenv('SF_USERNAME'),
            password=os.getenv('SF_PASSWORD'),
            security_token=os.getenv('SF_SECURITY_TOKEN'),
            domain=os.getenv('SF_DOMAIN', 'login')
        )

        with open(pdf_path, "rb") as f:
            encoded = base64.b64encode(f.read()).decode()

        content = sf.ContentVersion.create({
            'Title': os.path.basename(pdf_path),
            'PathOnClient': os.path.basename(pdf_path),
            'VersionData': encoded
        })

        content_id = content['id']
        download_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/version/download/{content_id}"

        query = sf.query(f"""
            SELECT Id FROM Supervisor_AI_Coaching__c 
            WHERE Project_ID__c = '{project_id}' 
            AND Name = '{supervisor_name}'
            LIMIT 1
        """)

        if query['totalSize'] > 0:
            coaching_id = query['records'][0]['Id']
            sf.Supervisor_AI_Coaching__c.update(coaching_id, {
                'Download_Link__c': download_url
            })
        else:
            print("⚠️ No matching Supervisor_AI_Coaching__c record found.")

        return download_url

    except Exception as e:
        print(f"⚠️ Upload error: {e}")
        return ""

# Salesforce helpers
def get_roles_from_salesforce():
    try:
        sf = Salesforce(
            username=os.getenv('SF_USERNAME'),
            password=os.getenv('SF_PASSWORD'),
            security_token=os.getenv('SF_SECURITY_TOKEN'),
            domain=os.getenv('SF_DOMAIN', 'login')
        )
        result = sf.query("SELECT Role__c FROM Supervisor__c WHERE Role__c != NULL")
        return list(set(record['Role__c'] for record in result['records']))
    except Exception as e:
        print(f"⚠️ Error fetching roles: {e}")
        return []

def get_supervisor_name_by_role(role):
    try:
        sf = Salesforce(
            username=os.getenv('SF_USERNAME'),
            password=os.getenv('SF_PASSWORD'),
            security_token=os.getenv('SF_SECURITY_TOKEN'),
            domain=os.getenv('SF_DOMAIN', 'login')
        )
        result = sf.query(f"SELECT Name FROM Supervisor__c WHERE Role__c = '{role}'")
        return [record['Name'] for record in result['records']]
    except Exception as e:
        print(f"⚠️ Error fetching names: {e}")
        return []

def get_projects_for_supervisor(supervisor_name):
    try:
        sf = Salesforce(
            username=os.getenv('SF_USERNAME'),
            password=os.getenv('SF_PASSWORD'),
            security_token=os.getenv('SF_SECURITY_TOKEN'),
            domain=os.getenv('SF_DOMAIN', 'login')
        )
        result = sf.query(f"SELECT Id FROM Supervisor__c WHERE Name = '{supervisor_name}' LIMIT 1")
        if result['totalSize'] == 0:
            return ""
        supervisor_id = result['records'][0]['Id']
        project_result = sf.query(f"SELECT Name FROM Project__c WHERE Supervisor_ID__c = '{supervisor_id}' LIMIT 1")
        return project_result['records'][0]['Name'] if project_result['totalSize'] > 0 else ""
    except Exception as e:
        print(f"⚠️ Error fetching project: {e}")
        return ""

def generate_outputs(role, supervisor_name, project_id, milestones, reflection):
    if not all([role, supervisor_name, project_id, milestones, reflection]):
        return "❗ Please fill all fields.", ""

    prompt = PROMPT_TEMPLATE.format(
        role=role,
        project_id=project_id,
        milestones=milestones,
        reflection=reflection
    )

    inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
    try:
        with torch.no_grad():
            outputs = model.generate(
                inputs['input_ids'],
                max_new_tokens=150,
                no_repeat_ngram_size=2,
                do_sample=True,
                top_p=0.9,
                temperature=0.7,
                pad_token_id=tokenizer.pad_token_id
            )
        result = tokenizer.decode(outputs[0], skip_special_tokens=True)
    except Exception as e:
        print(f"⚠️ Generation error: {e}")
        return "", ""

    def extract_between(text, start, end):
        s = text.find(start)
        e = text.find(end, s) if end else len(text)
        return text[s + len(start):e].strip() if s != -1 else ""

    checklist = extract_between(result, "Checklist:\n", "Suggestions:")
    suggestions = extract_between(result, "Suggestions:\n", None)

    if not checklist.strip():
        checklist = "- Perform daily safety inspection"
    if not suggestions.strip():
        suggestions = "- Monitor team coordination\n- Review safety protocols with the team"

    pdf_path = save_report_as_pdf(role, supervisor_name, project_id, checklist, suggestions)
    pdf_url = upload_pdf_to_salesforce_and_update_link(supervisor_name, project_id, pdf_path)
    if pdf_url:
        suggestions += f"\n\n🔗 [Download PDF Report]({pdf_url})"

    return checklist, suggestions

def create_interface():
    roles = get_roles_from_salesforce()
    with gr.Blocks(theme="soft") as demo:
        gr.Markdown("## 🧠 AI-Powered Supervisor Assistant")

        with gr.Row():
            role = gr.Dropdown(choices=roles, label="Role")
            supervisor_name = gr.Dropdown(choices=[], label="Supervisor Name")
            project_id = gr.Textbox(label="Project ID", interactive=False)

        milestones = gr.Textbox(label="Milestones (comma-separated KPIs)")
        reflection = gr.Textbox(label="Reflection Log", lines=4)

        with gr.Row():
            generate = gr.Button("Generate")
            clear = gr.Button("Clear")
            refresh = gr.Button("🔄 Refresh Roles")

        checklist_output = gr.Textbox(label="✅ Daily Checklist")
        suggestions_output = gr.Textbox(label="💡 Focus Suggestions")

        role.change(fn=lambda r: gr.update(choices=get_supervisor_name_by_role(r)), inputs=role, outputs=supervisor_name)
        supervisor_name.change(fn=get_projects_for_supervisor, inputs=supervisor_name, outputs=project_id)

        generate.click(fn=generate_outputs,
                       inputs=[role, supervisor_name, project_id, milestones, reflection],
                       outputs=[checklist_output, suggestions_output])

        clear.click(fn=lambda: ("", "", "", "", ""), inputs=None,
                    outputs=[role, supervisor_name, project_id, milestones, reflection])

        refresh.click(fn=lambda: gr.update(choices=get_roles_from_salesforce()), outputs=role)

    return demo

if __name__ == "__main__":
    app = create_interface()
    app.launch()