Spaces:
Sleeping
Sleeping
File size: 9,649 Bytes
736dc08 c7b5970 a18dc09 c7b5970 2fe12f1 86b5f4c 2fe12f1 736dc08 c7b5970 76f8605 c7b5970 2fe12f1 c7b5970 2fe12f1 c7b5970 2fe12f1 c7b5970 76f8605 c7b5970 76f8605 c7b5970 76f8605 c7b5970 2fe12f1 76f8605 c7b5970 2fe12f1 c7b5970 a18dc09 c7b5970 76f8605 c7b5970 76f8605 2fe12f1 c7b5970 2fe12f1 c7b5970 12aab4e c7b5970 2fe12f1 c7b5970 2fe12f1 c7b5970 2fe12f1 c7b5970 736dc08 76f8605 749a542 e06a887 736dc08 749a542 e06a887 2fe12f1 e06a887 736dc08 749a542 e06a887 749a542 e06a887 12aab4e e06a887 12aab4e e06a887 736dc08 76f8605 cc63678 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from simple_salesforce import Salesforce
import os
import base64
import datetime
from dotenv import load_dotenv
from fpdf import FPDF
# Load environment variables
load_dotenv()
# Required env vars check
required_env_vars = ['SF_USERNAME', 'SF_PASSWORD', 'SF_SECURITY_TOKEN']
missing_vars = [var for var in required_env_vars if not os.getenv(var)]
if missing_vars:
raise EnvironmentError(f"Missing required environment variables: {missing_vars}")
# Load model and tokenizer
model_name = "distilgpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
model.config.pad_token_id = tokenizer.pad_token_id
# Prompt template
PROMPT_TEMPLATE = """You are an AI assistant for construction supervisors. Given the role, project, milestones, and a reflection log, generate:
1. A Daily Checklist with clear and concise tasks based on the role and milestones.
Split the checklist into day-by-day tasks for a specified time period (e.g., one week).
2. Focus Suggestions based on concerns or keywords in the reflection log. Provide at least 2 suggestions.
Inputs:
Role: {role}
Project ID: {project_id}
Milestones: {milestones}
Reflection Log: {reflection}
Output Format:
Checklist (Day-by-Day):
- Day 1:
- Task 1
- Task 2
- Day 2:
- Task 1
- Task 2
...
Suggestions:
-
"""
# Save report as PDF
def save_report_as_pdf(role, supervisor_name, project_id, checklist, suggestions):
now = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
filename = f"report_{supervisor_name}_{project_id}_{now}.pdf"
file_path = f"./reports/{filename}"
os.makedirs("reports", exist_ok=True)
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.set_font("Arial", 'B', 14)
pdf.cell(200, 10, txt="Supervisor Daily Report", ln=True, align="C")
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=f"Role: {role}", ln=True)
pdf.cell(200, 10, txt=f"Supervisor: {supervisor_name}", ln=True)
pdf.cell(200, 10, txt=f"Project ID: {project_id}", ln=True)
pdf.ln(5)
pdf.set_font("Arial", 'B', 12)
pdf.cell(200, 10, txt="Daily Checklist", ln=True)
pdf.set_font("Arial", size=12)
for line in checklist.split("\n"):
pdf.multi_cell(0, 10, line)
pdf.ln(5)
pdf.set_font("Arial", 'B', 12)
pdf.cell(200, 10, txt="Focus Suggestions", ln=True)
pdf.set_font("Arial", size=12)
for line in suggestions.split("\n"):
pdf.multi_cell(0, 10, line)
pdf.output(file_path)
return file_path
# Upload to Salesforce and update record
def upload_pdf_to_salesforce_and_update_link(supervisor_name, project_id, pdf_path):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
with open(pdf_path, "rb") as f:
encoded = base64.b64encode(f.read()).decode()
content = sf.ContentVersion.create({
'Title': os.path.basename(pdf_path),
'PathOnClient': os.path.basename(pdf_path),
'VersionData': encoded
})
content_id = content['id']
download_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/version/download/{content_id}"
query = sf.query(f"""
SELECT Id FROM Supervisor_AI_Coaching__c
WHERE Project_ID__c = '{project_id}'
AND Name = '{supervisor_name}'
LIMIT 1
""")
if query['totalSize'] > 0:
coaching_id = query['records'][0]['Id']
sf.Supervisor_AI_Coaching__c.update(coaching_id, {
'Download_Link__c': download_url
})
else:
print("⚠️ No matching Supervisor_AI_Coaching__c record found.")
return download_url
except Exception as e:
print(f"⚠️ Upload error: {e}")
return ""
# Salesforce helpers
def get_roles_from_salesforce():
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
result = sf.query("SELECT Role__c FROM Supervisor__c WHERE Role__c != NULL")
return list(set(record['Role__c'] for record in result['records']))
except Exception as e:
print(f"⚠️ Error fetching roles: {e}")
return []
def get_supervisor_name_by_role(role):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
result = sf.query(f"SELECT Name FROM Supervisor__c WHERE Role__c = '{role}'")
return [record['Name'] for record in result['records']]
except Exception as e:
print(f"⚠️ Error fetching names: {e}")
return []
def get_projects_for_supervisor(supervisor_name):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
result = sf.query(f"SELECT Id FROM Supervisor__c WHERE Name = '{supervisor_name}' LIMIT 1")
if result['totalSize'] == 0:
return ""
supervisor_id = result['records'][0]['Id']
project_result = sf.query(f"SELECT Name FROM Project__c WHERE Supervisor_ID__c = '{supervisor_id}' LIMIT 1")
return project_result['records'][0]['Name'] if project_result['totalSize'] > 0 else ""
except Exception as e:
print(f"⚠️ Error fetching project: {e}")
return ""
def generate_outputs(role, supervisor_name, project_id, milestones, reflection):
if not all([role, supervisor_name, project_id, milestones, reflection]):
return "❗ Please fill all fields.", ""
prompt = PROMPT_TEMPLATE.format(
role=role,
project_id=project_id,
milestones=milestones,
reflection=reflection
)
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
try:
with torch.no_grad():
outputs = model.generate(
inputs['input_ids'],
max_new_tokens=150,
no_repeat_ngram_size=2,
do_sample=True,
top_p=0.9,
temperature=0.7,
pad_token_id=tokenizer.pad_token_id
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
print(f"⚠️ Generation error: {e}")
return "", ""
def extract_between(text, start, end):
s = text.find(start)
e = text.find(end, s) if end else len(text)
return text[s + len(start):e].strip() if s != -1 else ""
checklist = extract_between(result, "Checklist:\n", "Suggestions:")
suggestions = extract_between(result, "Suggestions:\n", None)
if not checklist.strip():
checklist = "- Perform daily safety inspection"
if not suggestions.strip():
suggestions = "- Monitor team coordination\n- Review safety protocols with the team"
pdf_path = save_report_as_pdf(role, supervisor_name, project_id, checklist, suggestions)
pdf_url = upload_pdf_to_salesforce_and_update_link(supervisor_name, project_id, pdf_path)
if pdf_url:
suggestions += f"\n\n🔗 [Download PDF Report]({pdf_url})"
return checklist, suggestions
def create_interface():
roles = get_roles_from_salesforce()
with gr.Blocks(theme="soft") as demo:
gr.Markdown("## 🧠 AI-Powered Supervisor Assistant")
with gr.Row():
role = gr.Dropdown(choices=roles, label="Role")
supervisor_name = gr.Dropdown(choices=[], label="Supervisor Name")
project_id = gr.Textbox(label="Project ID", interactive=False)
milestones = gr.Textbox(label="Milestones (comma-separated KPIs)")
reflection = gr.Textbox(label="Reflection Log", lines=4)
with gr.Row():
generate = gr.Button("Generate")
clear = gr.Button("Clear")
refresh = gr.Button("🔄 Refresh Roles")
checklist_output = gr.Textbox(label="✅ Daily Checklist")
suggestions_output = gr.Textbox(label="💡 Focus Suggestions")
role.change(fn=lambda r: gr.update(choices=get_supervisor_name_by_role(r)), inputs=role, outputs=supervisor_name)
supervisor_name.change(fn=get_projects_for_supervisor, inputs=supervisor_name, outputs=project_id)
generate.click(fn=generate_outputs,
inputs=[role, supervisor_name, project_id, milestones, reflection],
outputs=[checklist_output, suggestions_output])
clear.click(fn=lambda: ("", "", "", "", ""), inputs=None,
outputs=[role, supervisor_name, project_id, milestones, reflection])
refresh.click(fn=lambda: gr.update(choices=get_roles_from_salesforce()), outputs=role)
return demo
if __name__ == "__main__":
app = create_interface()
app.launch()
|