Spaces:
Sleeping
Sleeping
File size: 11,937 Bytes
736dc08 c7b5970 a18dc09 c7b5970 d01f3c3 86b5f4c d01f3c3 736dc08 c7b5970 76f8605 591cc42 c7b5970 d01f3c3 c7b5970 d01f3c3 c7b5970 d01f3c3 c04152f d01f3c3 c04152f d01f3c3 c04152f d01f3c3 c04152f d01f3c3 44e4103 c04152f d01f3c3 c04152f d01f3c3 c04152f 44e4103 c04152f 6cd2611 c04152f 6cd2611 c04152f 6cd2611 c04152f 6cd2611 c04152f 6cd2611 44e4103 c04152f 44e4103 8430872 d01f3c3 8430872 c04152f cb7ca06 c04152f cb7ca06 c04152f cb7ca06 c04152f cb7ca06 c04152f cb7ca06 c04152f 44e4103 736dc08 9f3752a 749a542 e06a887 736dc08 9f3752a e06a887 d01f3c3 e06a887 736dc08 749a542 9f3752a e06a887 749a542 d01f3c3 9f3752a d01f3c3 c04152f d01f3c3 e06a887 d01f3c3 e06a887 d01f3c3 e06a887 9f3752a d01f3c3 9f3752a 736dc08 76f8605 e38e39f c04152f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from simple_salesforce import Salesforce
import os
import base64
import datetime
from dotenv import load_dotenv
from fpdf import FPDF
import shutil
import html
# Load environment variables
load_dotenv()
# Required env vars check
required_env_vars = ['SF_USERNAME', 'SF_PASSWORD', 'SF_SECURITY_TOKEN']
missing_vars = [var for var in required_env_vars if not os.getenv(var)]
if missing_vars:
raise EnvironmentError(f"Missing required environment variables: {missing_vars}")
# Load model and tokenizer
model_name = "distilgpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
model.config.pad_token_id = tokenizer.pad_token_id
# Prompt template
PROMPT_TEMPLATE = """You are an AI assistant for construction supervisors. Given the role, project, milestones, and a reflection log, generate:
1. A Daily Checklist with clear and concise tasks based on the role and milestones.
Split the checklist into day-by-day tasks for a specified time period (e.g., one week).
2. Focus Suggestions based on concerns or keywords in the reflection log. Provide at least 2 suggestions.
Inputs:
Role: {role}
Project ID: {project_id}
Milestones: {milestones}
Reflection Log: {reflection}
Output Format:
Checklist (Day-by-Day):
- Day 1:
- Task 1
- Task 2
- Day 2:
- Task 1
- Task 2
...
Suggestions:
-
"""
def clean_text_for_pdf(text):
return html.unescape(text).encode('latin-1', 'replace').decode('latin-1')
def save_report_as_pdf(role, supervisor_name, project_id, checklist, suggestions):
now = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
filename = f"report_{supervisor_name}_{project_id}_{now}.pdf"
file_path = f"./reports/{filename}"
os.makedirs("reports", exist_ok=True)
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", 'B', 14)
pdf.cell(200, 10, txt="Supervisor Daily Report", ln=True, align="C")
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=clean_text_for_pdf(f"Role: {role}"), ln=True)
pdf.cell(200, 10, txt=clean_text_for_pdf(f"Supervisor: {supervisor_name}"), ln=True)
pdf.cell(200, 10, txt=clean_text_for_pdf(f"Project ID: {project_id}"), ln=True)
pdf.ln(5)
pdf.set_font("Arial", 'B', 12)
pdf.cell(200, 10, txt="Daily Checklist", ln=True)
pdf.set_font("Arial", size=12)
for line in checklist.split("\n"):
pdf.multi_cell(0, 10, clean_text_for_pdf(line))
pdf.ln(5)
pdf.set_font("Arial", 'B', 12)
pdf.cell(200, 10, txt="Focus Suggestions", ln=True)
pdf.set_font("Arial", size=12)
for line in suggestions.split("\n"):
pdf.multi_cell(0, 10, clean_text_for_pdf(line))
pdf.output(file_path)
temp_pdf_path = "/tmp/" + os.path.basename(file_path)
shutil.copy(file_path, temp_pdf_path)
return temp_pdf_path,filename
def upload_pdf_to_salesforce_and_update_link(supervisor_name, project_id, pdf_path, pdf_name, checklist, suggestions):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
# Read and encode the file as base64
with open(pdf_path, "rb") as f:
encoded = base64.b64encode(f.read()).decode()
# Create ContentVersion record to upload the PDF to Salesforce
content = sf.ContentVersion.create({
'Title': pdf_name,
'PathOnClient': pdf_name,
'VersionData': encoded
})
# Get the ContentDocumentId for the uploaded PDF
content_id = content['id']
download_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/version/download/{content_id}"
# Query Salesforce to find the specific Supervisor_AI_Coaching__c record
query = sf.query(f"""
SELECT Id FROM Supervisor__c
WHERE Name = '{supervisor_name}'
LIMIT 1
""")
# Ensure that the Supervisor is found
if query['totalSize'] == 0:
print("⚠️ Supervisor not found!")
return ""
supervisor_id = query['records'][0]['Id']
# Query to get the Project ID in Salesforce
project_query = sf.query(f"""
SELECT Id FROM Project__c WHERE Name = '{project_id}'
LIMIT 1
""")
# Ensure that the Project ID is found
if project_query['totalSize'] == 0:
print(f"⚠️ Project '{project_id}' not found in Salesforce!")
return ""
project_id_sf = project_query['records'][0]['Id']
# Create a new Supervisor_AI_Coaching__c record
sf.Supervisor_AI_Coaching__c.create({
'Project_ID__c': project_id_sf, # Use the Salesforce Project ID
'Supervisor_ID__c': supervisor_id,
'Daily_Checklist__c': checklist,
'Suggested_Tips__c': suggestions,
'Download_Link__c': download_url
})
return download_url
except Exception as e:
print(f"⚠️ Upload error: {e}")
return ""
def get_roles_from_salesforce():
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
result = sf.query("SELECT Role__c FROM Supervisor__c WHERE Role__c != NULL")
return list(set(record['Role__c'] for record in result['records']))
except Exception as e:
print(f"⚠️ Error fetching roles: {e}")
return []
def get_supervisor_name_by_role(role):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
result = sf.query(f"SELECT Name FROM Supervisor__c WHERE Role__c = '{role}'")
return [record['Name'] for record in result['records']]
except Exception as e:
print(f"⚠️ Error fetching names: {e}")
return []
def get_projects_for_supervisor(supervisor_name):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
result = sf.query(f"SELECT Id FROM Supervisor__c WHERE Name = '{supervisor_name}' LIMIT 1")
if result['totalSize'] == 0:
return ""
supervisor_id = result['records'][0]['Id']
project_result = sf.query(f"SELECT Name FROM Project__c WHERE Supervisor_ID__c = '{supervisor_id}' LIMIT 1")
return project_result['records'][0]['Name'] if project_result['totalSize'] > 0 else ""
except Exception as e:
print(f"⚠️ Error fetching project: {e}")
return ""
def generate_salesforce_dashboard_url(supervisor_name, project_id):
return f"https://aicoachforsitesupervisors-dev-ed--c.develop.vf.force.com/apex/DashboardPage?supervisorName={supervisor_name}&projectId={project_id}"
def open_dashboard(role, supervisor_name, project_id):
url = generate_salesforce_dashboard_url(supervisor_name, project_id)
return f'<a href="{url}" target="_blank">Open Salesforce Dashboard</a>'
def generate_outputs(role, supervisor_name, project_id, milestones, reflection):
if not all([role, supervisor_name, project_id, milestones, reflection]):
return "❗ Please fill all fields.", "", None, ""
prompt = PROMPT_TEMPLATE.format(role=role, project_id=project_id, milestones=milestones, reflection=reflection)
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
try:
with torch.no_grad():
outputs = model.generate(
inputs['input_ids'],
max_new_tokens=150,
no_repeat_ngram_size=2,
do_sample=True,
top_p=0.9,
temperature=0.7,
pad_token_id=tokenizer.pad_token_id
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
print(f"⚠️ Generation error: {e}")
return "", "", None, ""
def extract_between(text, start, end):
s = text.find(start)
e = text.find(end, s) if end else len(text)
return text[s + len(start):e].strip() if s != -1 else ""
checklist = extract_between(result, "Checklist:\n", "Suggestions:")
suggestions = extract_between(result, "Suggestions:\n", None)
if not checklist.strip():
checklist = "- Perform daily safety inspection"
if not suggestions.strip():
suggestions = "- Monitor team coordination\n- Review safety protocols with the team"
pdf_path, pdf_name = save_report_as_pdf(role, supervisor_name, project_id, checklist, suggestions)
pdf_url = upload_pdf_to_salesforce_and_update_link(supervisor_name, project_id, pdf_path, pdf_name, checklist, suggestions)
if pdf_url:
suggestions += f"\n\n🔗 [Download PDF Report]({pdf_url})"
return checklist, suggestions, pdf_path, pdf_name
def create_interface():
roles = get_roles_from_salesforce()
with gr.Blocks(theme="soft") as demo:
gr.Markdown("## 🧠 AI-Powered Supervisor Assistant")
with gr.Row():
role = gr.Dropdown(choices=roles, label="Role")
supervisor_name = gr.Dropdown(choices=[], label="Supervisor Name")
project_id = gr.Textbox(label="Project ID", interactive=False)
milestones = gr.Textbox(label="Milestones (comma-separated KPIs)")
reflection = gr.Textbox(label="Reflection Log", lines=4)
with gr.Row():
generate = gr.Button("Generate")
clear = gr.Button("Clear")
refresh = gr.Button("🔄 Refresh Roles")
dashboard_btn = gr.Button("Dashboard")
checklist_output = gr.Textbox(label="✅ Daily Checklist")
suggestions_output = gr.Textbox(label="💡 Focus Suggestions")
download_button = gr.File(label="⬇ Download Report")
pdf_link = gr.HTML()
dashboard_link = gr.HTML()
role.change(fn=lambda r: gr.update(choices=get_supervisor_name_by_role(r)), inputs=role, outputs=supervisor_name)
supervisor_name.change(fn=get_projects_for_supervisor, inputs=supervisor_name, outputs=project_id)
def handle_generate(role, supervisor_name, project_id, milestones, reflection):
checklist, suggestions, pdf_path, pdf_name = generate_outputs(role, supervisor_name, project_id, milestones, reflection)
return checklist, suggestions, pdf_path, pdf_name
generate.click(fn=handle_generate,
inputs=[role, supervisor_name, project_id, milestones, reflection],
outputs=[checklist_output, suggestions_output, download_button, pdf_link])
clear.click(fn=lambda: ("", "", "", "", ""),
inputs=None,
outputs=[role, supervisor_name, project_id, milestones, reflection])
refresh.click(fn=lambda: gr.update(choices=get_roles_from_salesforce()), outputs=role)
dashboard_btn.click(fn=open_dashboard,
inputs=[role, supervisor_name, project_id],
outputs=dashboard_link)
return demo
if __name__ == "__main__":
app = create_interface()
app.launch()
|