Spaces:
Sleeping
Sleeping
File size: 13,048 Bytes
736dc08 c7b5970 a18dc09 c7b5970 d01f3c3 86b5f4c d01f3c3 736dc08 c7b5970 76f8605 591cc42 c7b5970 d01f3c3 c7b5970 d01f3c3 c04152f d01f3c3 c04152f d01f3c3 0ca211a 1a70cd5 d01f3c3 9711148 d01f3c3 c04152f d01f3c3 1a70cd5 c04152f 1a70cd5 c04152f 6cd2611 1a70cd5 6cd2611 44e4103 e2e5bfd 44e4103 8430872 fa0eabe d01f3c3 8430872 c04152f fa0eabe c04152f fa0eabe c04152f fa0eabe c04152f cb7ca06 c04152f cb7ca06 c04152f cb7ca06 c04152f cb7ca06 fa0eabe cb7ca06 c04152f cb7ca06 c04152f 44e4103 736dc08 9f3752a fa0eabe 749a542 e06a887 fa0eabe e06a887 fa0eabe e06a887 fa0eabe e06a887 fa0eabe 9f3752a fa0eabe 9f3752a fa0eabe d01f3c3 fa0eabe e06a887 fa0eabe e2e5bfd 9f3752a e2e5bfd 9f3752a 736dc08 76f8605 e2e5bfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from simple_salesforce import Salesforce
import os
import base64
import datetime
from dotenv import load_dotenv
from fpdf import FPDF
import shutil
import html
# Load environment variables
load_dotenv()
# Required env vars check
required_env_vars = ['SF_USERNAME', 'SF_PASSWORD', 'SF_SECURITY_TOKEN']
missing_vars = [var for var in required_env_vars if not os.getenv(var)]
if missing_vars:
raise EnvironmentError(f"Missing required environment variables: {missing_vars}")
# Load model and tokenizer
model_name = "distilgpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
model.config.pad_token_id = tokenizer.pad_token_id
PROMPT_TEMPLATE = """You are an AI assistant for construction supervisors. Given the role, project, milestones, and a reflection log, generate:
1. A Daily Checklist with clear and concise tasks based on the role and milestones.
Split the checklist into day-by-day tasks for a specified time period (e.g., one week).
2. Focus Suggestions based on concerns or keywords in the reflection log. Provide at least 2 suggestions.
Inputs:
Role: {role}
Project ID: {project_id}
Milestones: {milestones}
Reflection Log: {reflection}
Output Format:
Checklist (Day-by-Day):
- Day 1:
- Task 1
- Task 2
- Day 2:
- Task 1
- Task 2
...
Suggestions:
-
"""
def clean_text_for_pdf(text):
return html.unescape(text).encode('latin-1', 'replace').decode('latin-1')
def save_report_as_pdf(role, supervisor_name, project_id, checklist, suggestions):
now = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
filename = f"report_{supervisor_name}_{project_id}_{now}.pdf"
file_path = f"./reports/{filename}"
os.makedirs("reports", exist_ok=True)
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", 'B', 14)
pdf.cell(200, 10, txt="Supervisor Daily Report", ln=True, align="C")
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=clean_text_for_pdf(f"Role: {role}"), ln=True)
pdf.cell(200, 10, txt=clean_text_for_pdf(f"Supervisor: {supervisor_name}"), ln=True)
pdf.cell(200, 10, txt=clean_text_for_pdf(f"Project ID: {project_id}"), ln=True)
pdf.ln(5)
pdf.set_font("Arial", 'B', 12)
pdf.cell(200, 10, txt="Daily Checklist", ln=True)
pdf.set_font("Arial", size=12)
for line in checklist.split("\n"):
pdf.multi_cell(0, 10, clean_text_for_pdf(line))
pdf.ln(5)
pdf.set_font("Arial", 'B', 12)
pdf.cell(200, 10, txt="Focus Suggestions", ln=True)
pdf.set_font("Arial", size=12)
for line in suggestions.split("\n"):
pdf.multi_cell(0, 10, clean_text_for_pdf(line))
pdf.output(file_path)
temp_pdf_path = "/tmp/" + os.path.basename(file_path)
shutil.copy(file_path, temp_pdf_path)
return temp_pdf_path, filename
def upload_pdf_to_salesforce_and_update_link(supervisor_name, project_id, pdf_path, pdf_name, checklist, suggestions):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
with open(pdf_path, "rb") as f:
encoded = base64.b64encode(f.read()).decode()
content = sf.ContentVersion.create({
'Title': pdf_name,
'PathOnClient': pdf_name,
'VersionData': encoded
})
content_id = content['id']
download_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/version/download/{content_id}"
query = sf.query(f"SELECT Id FROM Supervisor__c WHERE Name = '{supervisor_name}' LIMIT 1")
if query['totalSize'] == 0:
return ""
supervisor_id = query['records'][0]['Id']
project_query = sf.query(f"SELECT Id FROM Project__c WHERE Name = '{project_id}' LIMIT 1")
if project_query['totalSize'] == 0:
return ""
project_id_sf = project_query['records'][0]['Id']
sf.Supervisor_AI_Coaching__c.create({
'Project_ID__c': project_id_sf,
'Supervisor_ID__c': supervisor_id,
'Daily_Checklist__c': checklist,
'Suggested_Tips__c': suggestions,
'Download_Link__c': download_url
})
return download_url
except:
return ""
def get_roles_from_salesforce():
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
result = sf.query("SELECT Role__c FROM Supervisor__c WHERE Role__c != NULL")
return list(set(record['Role__c'] for record in result['records']))
except:
return []
def get_supervisor_name_by_role(role):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
result = sf.query(f"SELECT Name FROM Supervisor__c WHERE Role__c = '{role}'")
return [record['Name'] for record in result['records']]
except:
return []
def get_projects_for_supervisor(supervisor_name):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
result = sf.query(f"SELECT Id FROM Supervisor__c WHERE Name = '{supervisor_name}' LIMIT 1")
if result['totalSize'] == 0:
return ""
supervisor_id = result['records'][0]['Id']
project_result = sf.query(f"SELECT Name FROM Project__c WHERE Supervisor_ID__c = '{supervisor_id}' LIMIT 1")
return project_result['records'][0]['Name'] if project_result['totalSize'] > 0 else ""
except:
return ""
def get_dashboard_data_from_salesforce(supervisor_name, project_id):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
query = f"""
SELECT Daily_Checklist__c, Suggested_Tips__c, Download_Link__c, CreatedDate
FROM Supervisor_AI_Coaching__c
WHERE Supervisor_ID__r.Name = '{supervisor_name}' AND Project_ID__r.Name = '{project_id}'
ORDER BY CreatedDate DESC
LIMIT 1
"""
result = sf.query(query)
if result['totalSize'] == 0:
return "No dashboard data found.", "", "", ""
record = result['records'][0]
return (
record.get('Daily_Checklist__c', 'N/A'),
record.get('Suggested_Tips__c', 'N/A'),
record.get('Download_Link__c', ''),
record.get('CreatedDate', 'Unknown')
)
except Exception as e:
return f"Error loading dashboard: {e}", "", "", ""
def generate_outputs(role, supervisor_name, project_id, milestones, reflection):
if not all([role, supervisor_name, project_id, milestones, reflection]):
return "β Please fill all fields.", "", None, ""
prompt = PROMPT_TEMPLATE.format(role=role, project_id=project_id, milestones=milestones, reflection=reflection)
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
try:
with torch.no_grad():
outputs = model.generate(
inputs['input_ids'],
max_new_tokens=150,
no_repeat_ngram_size=2,
do_sample=True,
top_p=0.9,
temperature=0.7,
pad_token_id=tokenizer.pad_token_id
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
except:
return "", "", None, ""
def extract_between(text, start, end):
s = text.find(start)
e = text.find(end, s) if end else len(text)
return text[s + len(start):e].strip() if s != -1 else ""
checklist = extract_between(result, "Checklist:\n", "Suggestions:")
suggestions = extract_between(result, "Suggestions:\n", None)
if not checklist.strip():
checklist = "- Perform daily safety inspection"
if not suggestions.strip():
suggestions = "- Monitor team coordination\n- Review safety protocols with the team"
pdf_path, pdf_name = save_report_as_pdf(role, supervisor_name, project_id, checklist, suggestions)
pdf_url = upload_pdf_to_salesforce_and_update_link(supervisor_name, project_id, pdf_path, pdf_name, checklist, suggestions)
if pdf_url:
suggestions += f"\n\nπ [Download PDF Report]({pdf_url})"
return checklist, suggestions, pdf_path, pdf_name
def create_interface():
roles = get_roles_from_salesforce()
with gr.Blocks(theme="soft", css=".footer { display: none; }") as demo:
gr.Markdown("## π§ AI-Powered Supervisor Assistant")
with gr.Tab("βοΈ Generate Checklist"):
with gr.Row():
role = gr.Dropdown(choices=roles, label="Role")
supervisor_name = gr.Dropdown(choices=[], label="Supervisor Name")
project_id = gr.Textbox(label="Project ID", interactive=False)
milestones = gr.Textbox(label="Milestones (comma-separated KPIs)")
reflection = gr.Textbox(label="Reflection Log", lines=4)
with gr.Row():
generate = gr.Button("Generate")
clear = gr.Button("Clear")
refresh = gr.Button("π Refresh Roles")
checklist_output = gr.Textbox(label="β
Daily Checklist")
suggestions_output = gr.Textbox(label="π‘ Focus Suggestions")
download_button = gr.File(label="β¬ Download Report")
pdf_link = gr.HTML()
role.change(fn=lambda r: gr.update(choices=get_supervisor_name_by_role(r)), inputs=role, outputs=supervisor_name)
supervisor_name.change(fn=get_projects_for_supervisor, inputs=supervisor_name, outputs=project_id)
def handle_generate(role, supervisor_name, project_id, milestones, reflection):
checklist, suggestions, pdf_path, pdf_name = generate_outputs(role, supervisor_name, project_id, milestones, reflection)
return checklist, suggestions, pdf_path, pdf_name
generate.click(fn=handle_generate,
inputs=[role, supervisor_name, project_id, milestones, reflection],
outputs=[checklist_output, suggestions_output, download_button, pdf_link])
clear.click(fn=lambda: ("", "", "", "", ""),
inputs=None,
outputs=[role, supervisor_name, project_id, milestones, reflection])
refresh.click(fn=lambda: gr.update(choices=get_roles_from_salesforce()), outputs=role)
with gr.Tab("π Supervisor Dashboard"):
dash_supervisor = gr.Textbox(label="Supervisor Name", placeholder="e.g., SUP-056")
dash_project = gr.Textbox(label="Project ID", placeholder="e.g., PROJ-078")
load_dash = gr.Button("π₯ Load Dashboard")
dash_output = gr.HTML()
def show_dashboard_html(sup_name, proj_id):
checklist, suggestions, link, date = get_dashboard_data_from_salesforce(sup_name, proj_id)
link_html = f'<a href="{link}" target="_blank">Download PDF</a>' if link else "No report available"
html_card = f"""
<div style='border:1px solid #ccc; border-radius:10px; padding:20px; background-color:#f9f9f9'>
<h3>π <u>Dashboard Summary</u></h3>
<p><b>Supervisor:</b> {sup_name}</p>
<p><b>Project ID:</b> {proj_id}</p>
<p><b>ποΈ Last Updated:</b> {date}</p>
<hr>
<h4>β
<u>Daily Checklist</u></h4>
<pre style='background:#eef; padding:10px; border-radius:5px;'>{checklist}</pre>
<h4>π‘ <u>Focus Suggestions</u></h4>
<pre style='background:#ffe; padding:10px; border-radius:5px;'>{suggestions}</pre>
<p>{link_html}</p>
</div>
"""
return html_card
load_dash.click(fn=show_dashboard_html, inputs=[dash_supervisor, dash_project], outputs=dash_output)
return demo
if __name__ == "__main__":
app = create_interface()
app.launch() |