geethaAICoach3 / app.py
geethareddy's picture
Update app.py
126a459 verified
raw
history blame
6.85 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import datetime
from simple_salesforce import Salesforce
import os
import uuid
import tempfile
# Salesforce configuration
SF_USERNAME = os.getenv('SF_USERNAME', 'your_salesforce_username')
SF_PASSWORD = os.getenv('SF_PASSWORD', 'your_salesforce_password')
SF_SECURITY_TOKEN = os.getenv('SF_SECURITY_TOKEN', 'your_salesforce_security_token')
SF_DOMAIN = 'login' # Use 'test' for sandbox or 'login' for production
# Initialize Salesforce connection
sf = Salesforce(
username=SF_USERNAME,
password=SF_PASSWORD,
security_token=SF_SECURITY_TOKEN,
domain=SF_DOMAIN
)
# Initialize model and tokenizer (preloading them for quicker response)
model_name = "distilgpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Set pad_token_id to eos_token_id to avoid warnings
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.eos_token_id
# Define a more contextual prompt template
PROMPT_TEMPLATE = """You are an AI coach for construction supervisors. Based on the following inputs, generate a daily checklist, focus suggestions, and a motivational quote. Format your response with clear labels as follows:
Checklist:
- {milestones_list}
Suggestions:
- {suggestions_list}
Quote:
- Your motivational quote here
Inputs:
Role: {role}
Project: {project_id}
Milestones: {milestones}
Reflection: {reflection}
"""
# Function to generate outputs based on inputs
def generate_outputs(role, project_id, milestones, reflection):
# Validate inputs to ensure no missing fields
if not all([role, project_id, milestones, reflection]):
return "Error: All fields are required.", "", ""
# Create prompt from template
milestones_list = "\n- ".join([m.strip() for m in milestones.split(",")])
suggestions_list = ""
if "delays" in reflection.lower():
suggestions_list = "- Consider adjusting timelines to accommodate delays.\n- Communicate delays to all relevant stakeholders."
elif "weather" in reflection.lower():
suggestions_list = "- Ensure team has rain gear.\n- Monitor weather updates for possible further delays."
elif "equipment" in reflection.lower():
suggestions_list = "- Inspect all equipment to ensure no malfunctions.\n- Schedule maintenance if necessary."
# Create final prompt
prompt = PROMPT_TEMPLATE.format(
role=role,
project_id=project_id,
milestones=milestones,
reflection=reflection,
milestones_list=milestones_list,
suggestions_list=suggestions_list
)
# Tokenize inputs for model processing
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True, padding=True)
# Generate response from the model
with torch.no_grad():
outputs = model.generate(
inputs['input_ids'],
max_length=512,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
top_p=0.9,
temperature=0.8,
pad_token_id=tokenizer.eos_token_id
)
# Decode the response
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Parse the output and ensure it is structured
checklist = "No checklist generated."
suggestions = "No suggestions generated."
quote = "No quote generated."
if "Checklist:" in generated_text:
checklist_start = generated_text.find("Checklist:") + len("Checklist:")
suggestions_start = generated_text.find("Suggestions:")
checklist = generated_text[checklist_start:suggestions_start].strip()
if "Suggestions:" in generated_text:
suggestions_start = generated_text.find("Suggestions:") + len("Suggestions:")
quote_start = generated_text.find("Quote:")
suggestions = generated_text[suggestions_start:quote_start].strip()
if "Quote:" in generated_text:
quote_start = generated_text.find("Quote:") + len("Quote:")
quote = generated_text[quote_start:].strip()
# Generate a file with the processed output
output_content = f"""Checklist:
{checklist}
Suggestions:
{suggestions}
Quote:
{quote}
"""
# Create a temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.txt', mode='w', encoding='utf-8')
temp_file.write(output_content)
temp_file.close()
# Simulate a download URL (in production, upload to a file hosting service like Salesforce Content or AWS S3)
file_name = f"supervisor_coaching_{uuid.uuid4()}.txt"
download_url = f"/tmp/{file_name}" # Placeholder URL; replace with actual file hosting URL in production
os.rename(temp_file.name, os.path.join(tempfile.gettempdir(), file_name))
# Save to Salesforce Supervisor_AI_Coaching__c object
try:
sf.Supervisor_AI_Coaching__c.create({
'Role__c': role,
'Project_ID__c': project_id,
'Milestones__c': milestones,
'Reflection__c': reflection,
'Checklist__c': checklist,
'Suggestions__c': suggestions,
'Quote__c': quote,
'Download_Link__c': download_url
})
except Exception as e:
print(f"Error saving to Salesforce: {str(e)}")
# Return structured outputs
return checklist, suggestions, quote
# Gradio interface for fast user interaction
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("# Construction Supervisor AI Coach")
gr.Markdown("Enter details to generate a daily checklist, focus suggestions, and a motivational quote.")
with gr.Row():
role = gr.Dropdown(choices=["Supervisor", "Foreman", "Project Manager"], label="Role")
project_id = gr.Textbox(label="Project ID")
milestones = gr.Textbox(label="Milestones (comma-separated KPIs)")
reflection = gr.Textbox(label="Reflection Log", lines=5)
with gr.Row():
submit = gr.Button("Generate")
clear = gr.Button("Clear")
checklist_output = gr.Textbox(label="Daily Checklist")
suggestions_output = gr.Textbox(label="Focus Suggestions")
quote_output = gr.Textbox(label="Motivational Quote")
submit.click(
fn=generate_outputs,
inputs=[role, project_id, milestones, reflection],
outputs=[checklist_output, suggestions_output, quote_output]
)
clear.click(
fn=lambda: ("", "", "", ""),
inputs=None,
outputs=[role, project_id, milestones, reflection]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()