geetika14 commited on
Commit
0a130ee
·
verified ·
1 Parent(s): 5260ce5

Delete TransArt_Gradio_Code

Browse files
Files changed (1) hide show
  1. TransArt_Gradio_Code +0 -140
TransArt_Gradio_Code DELETED
@@ -1,140 +0,0 @@
1
- # Install the required libraries
2
- !pip install transformers gradio Pillow requests
3
- import os
4
- import requests
5
- from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
6
- from PIL import Image, ImageDraw
7
- import io
8
- import gradio as gr
9
- import torch
10
-
11
- # Detect if GPU is available
12
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
13
-
14
- # Load the MarianMT model and tokenizer for translation (Tamil to English)
15
- model_name = "Helsinki-NLP/opus-mt-mul-en"
16
- translation_model = MarianMTModel.from_pretrained(model_name).to(device)
17
- translation_tokenizer = MarianTokenizer.from_pretrained(model_name)
18
-
19
- # Load GPT-Neo for creative text generation
20
- text_generation_model_name = "EleutherAI/gpt-neo-1.3B"
21
- text_generation_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name).to(device)
22
- text_generation_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
23
-
24
- # Add padding token to GPT-Neo tokenizer if not present
25
- if text_generation_tokenizer.pad_token is None:
26
- text_generation_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
27
-
28
- # Set your Hugging Face API key
29
- os.environ['HF_API_KEY'] = 'Your_HF_TOKEN' # Replace with your actual API key
30
- api_key = os.getenv('HF_API_KEY')
31
- if api_key is None:
32
- raise ValueError("Hugging Face API key is not set. Please set it in your environment.")
33
-
34
- headers = {"Authorization": f"Bearer {api_key}"}
35
-
36
- # Define the API URL for image generation (replace with actual model URL)
37
- API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" # Replace with a valid image generation model
38
-
39
- # Query Hugging Face API to generate image with error handling
40
- def query(payload):
41
- response = requests.post(API_URL, headers=headers, json=payload)
42
- if response.status_code != 200:
43
- print(f"Error: Received status code {response.status_code}")
44
- print(f"Response: {response.text}")
45
- return None
46
- return response.content
47
-
48
- # Translate Tamil text to English
49
- def translate_text(tamil_text):
50
- inputs = translation_tokenizer(tamil_text, return_tensors="pt", padding=True, truncation=True).to(device)
51
- translated_tokens = translation_model.generate(**inputs)
52
- translation = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
53
- return translation
54
-
55
- # Generate an image based on the translated text with error handling
56
- def generate_image(prompt):
57
- image_bytes = query({"inputs": prompt})
58
-
59
- if image_bytes is None:
60
- # Return a blank image with error message
61
- error_img = Image.new('RGB', (300, 300), color=(255, 0, 0))
62
- d = ImageDraw.Draw(error_img)
63
- d.text((10, 150), "Image Generation Failed", fill=(255, 255, 255))
64
- return error_img
65
-
66
- try:
67
- image = Image.open(io.BytesIO(image_bytes))
68
- return image
69
- except Exception as e:
70
- print(f"Error: {e}")
71
- # Return an error image in case of failure
72
- error_img = Image.new('RGB', (300, 300), color=(255, 0, 0))
73
- d = ImageDraw.Draw(error_img)
74
- d.text((10, 150), "Invalid Image Data", fill=(255, 255, 255))
75
- return error_img
76
-
77
- # Generate creative text based on the translated English text
78
- def generate_creative_text(translated_text):
79
- inputs = text_generation_tokenizer(translated_text, return_tensors="pt", padding=True, truncation=True).to(device)
80
- generated_tokens = text_generation_model.generate(**inputs, max_length=100)
81
- creative_text = text_generation_tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
82
- return creative_text
83
-
84
- # Function to handle the full workflow
85
- def translate_generate_image_and_text(tamil_text):
86
- # Step 1: Translate Tamil to English
87
- translated_text = translate_text(tamil_text)
88
-
89
- # Step 2: Generate an image from the translated text
90
- image = generate_image(translated_text)
91
-
92
- # Step 3: Generate creative text from the translated text
93
- creative_text = generate_creative_text(translated_text)
94
-
95
- return translated_text, creative_text, image
96
-
97
- # Create a visually appealing Gradio interface
98
- css = """
99
- #transart-title {
100
- font-size: 2.5em;
101
- font-weight: bold;
102
- color: #4CAF50;
103
- text-align: center;
104
- margin-bottom: 10px;
105
- }
106
- #transart-subtitle {
107
- font-size: 1.25em;
108
- text-align: center;
109
- color: #555555;
110
- margin-bottom: 20px;
111
- }
112
- body {
113
- background-color: #f0f0f5;
114
- }
115
- .gradio-container {
116
- font-family: 'Arial', sans-serif;
117
- }
118
- """
119
-
120
- # Custom HTML for title and subtitle (can be displayed in Markdown)
121
- title_markdown = """
122
- # <div id="transart-title">TransArt</div>
123
- ### <div id="transart-subtitle">Tamil to English Translation, Creative Text & Image Generation</div>
124
- """
125
-
126
- # Gradio interface with customized layout and aesthetics
127
- with gr.Blocks(css=css) as interface:
128
- gr.Markdown(title_markdown) # Title and subtitle in Markdown
129
- with gr.Row():
130
- with gr.Column():
131
- tamil_input = gr.Textbox(label="Enter Tamil Text", placeholder="Type Tamil text here...", lines=3) # Input for Tamil text
132
- with gr.Column():
133
- translated_output = gr.Textbox(label="Translated Text", interactive=False) # Output for translated text
134
- creative_text_output = gr.Textbox(label="Creative Generated Text", interactive=False) # Output for creative text
135
- generated_image_output = gr.Image(label="Generated Image") # Output for generated image
136
-
137
- gr.Button("Generate").click(fn=translate_generate_image_and_text, inputs=tamil_input, outputs=[translated_output, creative_text_output, generated_image_output])
138
-
139
- # Launch the Gradio app
140
- interface.launch(debug=True, server_name="0.0.0.0")