Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
st.title("WhiteRabbitNeo Chatbot") | |
# Load Model | |
def load_model(): | |
model_name = "path/to/chatbot_files" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) | |
return tokenizer, model | |
tokenizer, model = load_model() | |
# Chat Interface | |
user_input = st.text_input("You:", placeholder="Type your message here...") | |
if user_input: | |
inputs = tokenizer.encode(user_input, return_tensors="pt") | |
outputs = model.generate(inputs, max_length=50, num_return_sequences=1) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.write(f"Chatbot: {response}") | |
def load_model(): | |
model_name = "C:/Users/DMJ/WhiteRabbitNeo-13B-v1/chatbot_files" # Use forward slashes for compatibility | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) | |
return tokenizer, model | |