from PIL import Image import torch from huggingface_hub import hf_hub_download # custom installation from this PR: https://github.com/huggingface/transformers/pull/34583 # !pip install git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers from transformers import DepthProConfig, DepthProImageProcessorFast, DepthProForDepthEstimation # load DepthPro model, used as backbone config = DepthProConfig( patch_size=192, patch_embeddings_size=16, num_hidden_layers=12, intermediate_hook_ids=[11, 8, 7, 5], intermediate_feature_dims=[256, 256, 256, 256], scaled_images_ratios=[0.5, 1.0], scaled_images_overlap_ratios=[0.5, 0.25], scaled_images_feature_dims=[1024, 512], use_fov_model=False, ) depthpro_for_depth_estimation = DepthProForDepthEstimation(config) # create DepthPro for super resolution class DepthProForSuperResolution(torch.nn.Module): def __init__(self, depthpro_for_depth_estimation): super().__init__() self.depthpro_for_depth_estimation = depthpro_for_depth_estimation hidden_size = self.depthpro_for_depth_estimation.config.fusion_hidden_size self.image_head = torch.nn.Sequential( torch.nn.ConvTranspose2d( in_channels=config.num_channels, out_channels=hidden_size, kernel_size=4, stride=2, padding=1 ), torch.nn.ReLU(), ) self.head = torch.nn.Sequential( torch.nn.Conv2d( in_channels=hidden_size, out_channels=hidden_size, kernel_size=3, stride=1, padding=1 ), torch.nn.ReLU(), torch.nn.ConvTranspose2d( in_channels=hidden_size, out_channels=hidden_size, kernel_size=4, stride=2, padding=1 ), torch.nn.ReLU(), torch.nn.Conv2d( in_channels=hidden_size, out_channels=self.depthpro_for_depth_estimation.config.num_channels, kernel_size=3, stride=1, padding=1 ), ) def forward(self, pixel_values): # x is the low resolution image x = pixel_values encoder_features = self.depthpro_for_depth_estimation.depth_pro(x).features fused_hidden_state = self.depthpro_for_depth_estimation.fusion_stage(encoder_features)[-1] x = self.image_head(x) x = torch.nn.functional.interpolate(x, size=fused_hidden_state.shape[2:]) x = x + fused_hidden_state x = self.head(x) return x # initialize the model model = DepthProForSuperResolution(depthpro_for_depth_estimation) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) # load weights weights_path = hf_hub_download(repo_id="geetu040/DepthPro_SR_4x_384p", filename="model_weights.pth") model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu'))) # load image processor image_processor = DepthProImageProcessorFast( do_resize=True, size={"width": 384, "height": 384}, do_rescale=True, do_normalize=True ) # define crop function to ensure square image def crop_image(image): """ Crops the image from the center to make aspect ratio 1:1. """ width, height = image.size min_dim = min(width, height) left = (width - min_dim) // 2 top = (height - min_dim) // 2 right = left + min_dim bottom = top + min_dim image = image.crop((left, top, right, bottom)) return image def predict(image): # inference image = crop_image(image) image = image.resize((384, 384), Image.Resampling.BICUBIC) # prepare image for the model inputs = image_processor(images=image, return_tensors="pt") inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): outputs = model(**inputs) # convert tensors to PIL.Image output = outputs[0] # extract the first and only batch output = output.cpu() # unload from cuda if used output = torch.permute(output, (1, 2, 0)) # (C, H, W) -> (H, W, C) output = output * 0.5 + 0.5 # undo normalization output = output * 255. # undo scaling output = output.clip(0, 255.) # fix out of range output = output.numpy() # convert to numpy output = output.astype('uint8') # convert to PIL.Image compatible format output = Image.fromarray(output) # create PIL.Image object return output