# Copyright 2024 MIT Han Lab # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 from typing import Any, Optional import torch __all__ = ["REGISTERED_OPTIMIZER_DICT", "build_optimizer"] # register optimizer here # name: optimizer, kwargs with default values REGISTERED_OPTIMIZER_DICT: dict[str, tuple[type, dict[str, Any]]] = { "sgd": (torch.optim.SGD, {"momentum": 0.9, "nesterov": True}), "adam": (torch.optim.Adam, {"betas": (0.9, 0.999), "eps": 1e-8, "amsgrad": False}), "adamw": (torch.optim.AdamW, {"betas": (0.9, 0.999), "eps": 1e-8, "amsgrad": False}), } def build_optimizer( net_params, optimizer_name: str, optimizer_params: Optional[dict], init_lr: float ) -> torch.optim.Optimizer: optimizer_class, default_params = REGISTERED_OPTIMIZER_DICT[optimizer_name] optimizer_params = {} if optimizer_params is None else optimizer_params for key in default_params: if key in optimizer_params: default_params[key] = optimizer_params[key] optimizer = optimizer_class(net_params, init_lr, **default_params) return optimizer