Commit
·
1307336
1
Parent(s):
6384c62
fix
Browse files
app.py
CHANGED
@@ -1,29 +1,134 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
from peft import PeftModel
|
4 |
import torch
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
-
model
|
|
|
|
|
16 |
|
|
|
17 |
def reply(prompt):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, GenerationConfig
|
|
|
3 |
import torch
|
4 |
+
import threading
|
5 |
+
from queue import Queue
|
6 |
|
7 |
+
# Custom Streamer Class
|
8 |
+
class MyStreamer(TextStreamer):
|
9 |
+
def __init__(self, tokenizer, skip_prompt=True, **decode_kwargs):
|
10 |
+
super().__init__(tokenizer, skip_prompt, **decode_kwargs)
|
11 |
+
self.text_queue = Queue()
|
12 |
+
self.stop_signal = None
|
13 |
+
self.skip_special_tokens = decode_kwargs.pop("skip_special_tokens", True) # Default to True
|
14 |
+
self.token_cache = [] # Add a token cache
|
15 |
|
16 |
+
def on_finalized_text(self, text, stream_end=False):
|
17 |
+
"""Put the new text in the queue."""
|
18 |
+
self.text_queue.put(text)
|
19 |
|
20 |
+
def put(self, value):
|
21 |
+
"""Decode the token and add to buffer."""
|
22 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
23 |
+
raise ValueError("put() only supports a single sequence of tokens at a time.")
|
24 |
+
elif len(value.shape) > 1:
|
25 |
+
value = value[0]
|
26 |
|
27 |
+
if self.skip_prompt and self.next_tokens_are_prompt:
|
28 |
+
self.next_tokens_are_prompt = False
|
29 |
+
return
|
30 |
+
|
31 |
+
# Add the token to the cache
|
32 |
+
self.token_cache.extend(value.tolist())
|
33 |
+
|
34 |
+
# Decode the entire cache
|
35 |
+
text = self.tokenizer.decode(
|
36 |
+
self.token_cache,
|
37 |
+
skip_special_tokens=self.skip_special_tokens,
|
38 |
+
**self.decode_kwargs,
|
39 |
+
)
|
40 |
+
|
41 |
+
# Check for stop signal (e.g., end of text)
|
42 |
+
if self.stop_signal and text.endswith(self.stop_signal):
|
43 |
+
text = text[: -len(self.stop_signal)]
|
44 |
+
self.on_finalized_text(text, stream_end=True)
|
45 |
+
self.token_cache = [] # Clear the cache
|
46 |
+
else:
|
47 |
+
self.on_finalized_text(text, stream_end=False)
|
48 |
+
|
49 |
+
def end(self):
|
50 |
+
"""Flush the buffer."""
|
51 |
+
if self.token_cache:
|
52 |
+
text = self.tokenizer.decode(
|
53 |
+
self.token_cache,
|
54 |
+
skip_special_tokens=self.skip_special_tokens,
|
55 |
+
**self.decode_kwargs,
|
56 |
+
)
|
57 |
+
self.on_finalized_text(text, stream_end=True)
|
58 |
+
self.token_cache = [] # Clear the cache
|
59 |
+
else:
|
60 |
+
self.on_finalized_text("", stream_end=True)
|
61 |
+
|
62 |
+
# Load the model and tokenizer
|
63 |
+
model_name = "genaforvena/huivam_finnegan_llama3.2-1b"
|
64 |
+
model = None
|
65 |
+
tokenizer = None
|
66 |
+
try:
|
67 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
69 |
+
print("Model and tokenizer loaded successfully.")
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error loading model/tokenizer: {e}")
|
72 |
+
exit()
|
73 |
+
|
74 |
+
# Move the model to the appropriate device
|
75 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
76 |
+
if model:
|
77 |
+
model.to(device)
|
78 |
+
print(f"Model moved to {device}.")
|
79 |
|
80 |
+
# Function to generate a streaming response
|
81 |
def reply(prompt):
|
82 |
+
messages = [{"role": "user", "content": prompt}]
|
83 |
+
try:
|
84 |
+
inputs = tokenizer.apply_chat_template(
|
85 |
+
messages,
|
86 |
+
tokenize=True,
|
87 |
+
add_generation_prompt=True,
|
88 |
+
return_tensors="pt",
|
89 |
+
).to(device)
|
90 |
+
|
91 |
+
# Create a custom streamer
|
92 |
+
streamer = MyStreamer(tokenizer, skip_prompt=True)
|
93 |
+
|
94 |
+
generation_config = GenerationConfig(
|
95 |
+
pad_token_id=tokenizer.pad_token_id,
|
96 |
+
)
|
97 |
+
|
98 |
+
def generate():
|
99 |
+
model.generate(
|
100 |
+
inputs,
|
101 |
+
generation_config=generation_config,
|
102 |
+
streamer=streamer,
|
103 |
+
max_new_tokens=512, # Adjust as needed
|
104 |
+
)
|
105 |
+
|
106 |
+
thread = threading.Thread(target=generate)
|
107 |
+
thread.start()
|
108 |
+
|
109 |
+
# Yield only the new tokens as they come in
|
110 |
+
while thread.is_alive():
|
111 |
+
try:
|
112 |
+
next_token = streamer.text_queue.get(timeout=0.1)
|
113 |
+
yield next_token # Yield only the new token
|
114 |
+
except:
|
115 |
+
pass
|
116 |
+
|
117 |
+
# Yield any remaining text after generation finishes
|
118 |
+
while not streamer.text_queue.empty():
|
119 |
+
next_token = streamer.text_queue.get()
|
120 |
+
yield next_token # Yield only the new token
|
121 |
+
|
122 |
+
except Exception as e:
|
123 |
+
print(f"Error during inference: {e}")
|
124 |
+
yield f"Error processing your request: {e}"
|
125 |
+
|
126 |
+
# Gradio interface
|
127 |
+
demo = gr.Interface(
|
128 |
+
fn=reply,
|
129 |
+
inputs="text",
|
130 |
+
outputs="text",
|
131 |
+
)
|
132 |
+
|
133 |
+
# Launch the Gradio app
|
134 |
+
demo.launch(share=True)
|