|
import streamlit as st
|
|
import pandas as pd
|
|
from ecologits.impacts.llm import compute_llm_impacts
|
|
|
|
from src.utils import format_impacts, average_range_impacts, format_impacts_expert, model_active_params_fn, model_total_params_fn
|
|
from src.impacts import display_impacts
|
|
|
|
from src.electricity_mix import COUNTRY_CODES, find_electricity_mix, dataframe_electricity_mix
|
|
from ecologits.model_repository import models
|
|
|
|
import plotly.express as px
|
|
|
|
def reset_model():
|
|
model = 'CUSTOM'
|
|
|
|
def expert_mode():
|
|
|
|
st.markdown("### 🤓 Expert mode")
|
|
|
|
with st.container(border = True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
col11, col22, col33 = st.columns(3)
|
|
|
|
with col11:
|
|
|
|
|
|
|
|
active_params = st.number_input('Active parameters (B)', 0, None, 45)
|
|
|
|
with col22:
|
|
total_params = st.number_input('Total parameters (B)', 0, None, 45)
|
|
|
|
with col33:
|
|
output_tokens = st.number_input('Output completion tokens', 100)
|
|
|
|
|
|
|
|
location = st.selectbox('Location', [x[0] for x in COUNTRY_CODES])
|
|
|
|
col4, col5, col6 = st.columns(3)
|
|
|
|
with col4:
|
|
mix_gwp = st.number_input('Electricity mix - GHG emissions [kgCO2eq / kWh]', find_electricity_mix([x[1] for x in COUNTRY_CODES if x[0] ==location][0])[2], format="%0.6f")
|
|
|
|
with col5:
|
|
mix_adpe = st.number_input('Electricity mix - Abiotic resources [kgSbeq / kWh]', find_electricity_mix([x[1] for x in COUNTRY_CODES if x[0] ==location][0])[0], format="%0.13f")
|
|
with col6:
|
|
mix_pe = st.number_input('Electricity mix - Primary energy [MJ / kWh]', find_electricity_mix([x[1] for x in COUNTRY_CODES if x[0] ==location][0])[1], format="%0.3f")
|
|
|
|
impacts = compute_llm_impacts(model_active_parameter_count=active_params,
|
|
model_total_parameter_count=total_params,
|
|
output_token_count=output_tokens,
|
|
request_latency=100000,
|
|
if_electricity_mix_gwp=mix_gwp,
|
|
if_electricity_mix_adpe=mix_adpe,
|
|
if_electricity_mix_pe=mix_pe
|
|
)
|
|
|
|
impacts, usage, embodied = format_impacts(impacts)
|
|
|
|
with st.container(border = True):
|
|
|
|
st.markdown('<h3 align="center">Environmental Impacts</h2>', unsafe_allow_html = True)
|
|
|
|
display_impacts(impacts)
|
|
|
|
with st.expander('⚖️ Usage vs Embodied'):
|
|
|
|
st.markdown('<h3 align="center">Embodied vs Usage comparison</h2>', unsafe_allow_html = True)
|
|
|
|
st.markdown('The usage impacts account for the electricity consumption of the model while the embodied impacts account for resource extraction (e.g., minerals and metals), manufacturing, and transportation of the hardware.')
|
|
|
|
col_ghg_comparison, col_adpe_comparison, col_pe_comparison = st.columns(3)
|
|
|
|
with col_ghg_comparison:
|
|
fig_gwp = px.pie(
|
|
values = [average_range_impacts(usage.gwp.value), average_range_impacts(embodied.gwp.value)],
|
|
names = ['usage', 'embodied'],
|
|
title = 'GHG emissions',
|
|
color_discrete_sequence=["#636EFA", "#00CC96"],
|
|
width = 100
|
|
)
|
|
fig_gwp.update_layout(showlegend=False, title_x=0.5)
|
|
|
|
st.plotly_chart(fig_gwp)
|
|
|
|
with col_adpe_comparison:
|
|
fig_adpe = px.pie(
|
|
values = [average_range_impacts(usage.adpe.value), average_range_impacts(embodied.adpe.value)],
|
|
names = ['usage', 'embodied'],
|
|
title = 'Abiotic depletion',
|
|
color_discrete_sequence=["#00CC96","#636EFA"],
|
|
width = 100)
|
|
fig_adpe.update_layout(
|
|
showlegend=True,
|
|
legend=dict(yanchor="bottom", x = 0.35, y = -0.1),
|
|
title_x=0.5)
|
|
|
|
st.plotly_chart(fig_adpe)
|
|
|
|
with col_pe_comparison:
|
|
fig_pe = px.pie(
|
|
values = [average_range_impacts(usage.pe.value), average_range_impacts(embodied.pe.value)],
|
|
names = ['usage', 'embodied'],
|
|
title = 'Primary energy',
|
|
color_discrete_sequence=["#636EFA", "#00CC96"],
|
|
width = 100)
|
|
fig_pe.update_layout(showlegend=False, title_x=0.5)
|
|
|
|
st.plotly_chart(fig_pe)
|
|
|
|
with st.expander('🌍️ Location impact'):
|
|
|
|
st.markdown('<h4 align="center">How can location impact the footprint ?</h4>', unsafe_allow_html = True)
|
|
|
|
countries_to_compare = st.multiselect(
|
|
label = 'Countries to compare',
|
|
options = [x[0] for x in COUNTRY_CODES],
|
|
default = ["🇫🇷 France", "🇺🇸 United States", "🇨🇳 China"]
|
|
)
|
|
|
|
try:
|
|
|
|
df = dataframe_electricity_mix(countries_to_compare)
|
|
|
|
impact_type = st.selectbox(
|
|
label='Select an impact type to compare',
|
|
options=[x for x in df.columns if x!='country'],
|
|
index=1)
|
|
|
|
df.sort_values(by = impact_type, inplace = True)
|
|
|
|
fig_2 = px.bar(df, x = df.index, y = impact_type, text = impact_type, color = impact_type)
|
|
st.plotly_chart(fig_2)
|
|
|
|
except:
|
|
|
|
st.warning("Can't display chart with no values.") |