import requests import json import pandas as pd from src.constants import MODEL_REPOSITORY_URL, MAIN_MODELS import streamlit as st def clean_models_data(df, with_filter = True): dict_providers = { 'google': 'Google', 'mistralai': 'MistralAI', 'meta-llama': 'Meta', 'openai': 'OpenAI', 'anthropic': 'Anthropic', 'cohere': 'Cohere', 'microsoft': 'Microsoft', 'mistral-community': 'Mistral Community', 'databricks': 'Databricks' } models_to_keep = MAIN_MODELS df.drop('type', axis=1, inplace=True) df.loc[df['name'].str.contains('/'), 'name_clean'] = df.loc[df['name'].str.contains('/'), 'name'].str.split('/').str[1] df['name_clean'] = df['name_clean'].fillna(df['name']) df['name_clean'] = df['name_clean'].replace({'-': ' ', 'latest': ''}, regex = True) df.loc[df['provider'] == 'huggingface_hub', 'provider_clean'] = df.loc[df['provider'] == 'huggingface_hub', 'name'].str.split('/').str[0] df['provider_clean'] = df['provider_clean'].fillna(df['provider']) df['provider_clean'] = df['provider_clean'].replace(dict_providers, regex = True) df['architecture_type'] = df['architecture'].apply(lambda x: x['type']) df['architecture_parameters'] = df['architecture'].apply(lambda x: x['parameters']) df['warnings'] = df['warnings'].apply(lambda x: ', '.join(x) if x else None).fillna('none') df['warning_arch'] = df['warnings'].apply(lambda x: 'model-arch-not-released' in x) df['warning_multi_modal'] = df['warnings'].apply(lambda x: 'model-arch-multimodal' in x) if with_filter == True: df = df[df['name'].isin(models_to_keep)] return df[['provider', 'provider_clean', 'name', 'name_clean', 'architecture_type', 'architecture_parameters', 'warning_arch', 'warning_multi_modal']] @st.cache_data def load_models(filter_main = True): resp = requests.get(MODEL_REPOSITORY_URL) data = json.loads(resp.text) df = pd.DataFrame(data['models']) return clean_models_data(df, filter_main)