genevera commited on
Commit
28d5bd6
·
1 Parent(s): de80bf4

make results deterministic

Browse files
Files changed (1) hide show
  1. app.py +25 -22
app.py CHANGED
@@ -35,34 +35,35 @@ class AudioTokenWrapper(torch.nn.Module):
35
  ):
36
 
37
  super().__init__()
 
38
  # Load scheduler and models
39
- self.ddpm = DDPMScheduler.from_pretrained(repo_id, subfolder="scheduler")
40
- self.ddim = DDIMScheduler.from_pretrained(repo_id, subfolder="scheduler")
41
- self.pndm = PNDMScheduler.from_pretrained(repo_id, subfolder="scheduler")
42
- self.lms = LMSDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
43
- self.euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
44
- self.euler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
45
- self.dpm = DPMSolverMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler")
46
- self.dpms = DPMSolverSinglestepScheduler.from_pretrained(repo_id, subfolder="scheduler")
47
- self.deis = DEISMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler")
48
- self.unipc = UniPCMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler")
49
- self.heun = HeunDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
50
- self.kdpm2_anc = KDPM2AncestralDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
51
- self.kdpm2 = KDPM2DiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
52
 
53
 
54
 
55
  self.tokenizer = CLIPTokenizer.from_pretrained(
56
- repo_id, subfolder="tokenizer"
57
  )
58
  self.text_encoder = CLIPTextModel.from_pretrained(
59
- repo_id, subfolder="text_encoder", revision=None
60
  )
61
  self.unet = UNet2DConditionModel.from_pretrained(
62
- repo_id, subfolder="unet", revision=None
63
  )
64
  self.vae = AutoencoderKL.from_pretrained(
65
- repo_id, subfolder="vae", revision=None
66
  )
67
 
68
  checkpoint = torch.load(
@@ -172,17 +173,18 @@ def greet(audio, steps=25, scheduler="ddpm"):
172
  audio_values = torch.unsqueeze(torch.tensor(audio), dim=0).to(device).to(dtype=weight_dtype)
173
  if audio_values.ndim == 1:
174
  audio_values = torch.unsqueeze(audio_values, dim=0)
 
 
175
  with torch.no_grad():
176
- torch.cuda.empty_cache()
177
  aud_features = model.aud_encoder.extract_features(audio_values)[1]
178
  audio_token = model.embedder(aud_features)
 
179
 
180
- token_embeds = model.text_encoder.get_input_embeddings().weight.data
181
  token_embeds[model.placeholder_token_id] = audio_token.clone()
182
  g_gpu = torch.Generator(device='cuda')
183
- g_gpu.manual_seed(23029249075547) # no reason this can't be input by the user!
184
  pipeline = StableDiffusionPipeline.from_pretrained(
185
- "philz1337/reliberate",
186
  tokenizer=model.tokenizer,
187
  text_encoder=model.text_encoder,
188
  vae=model.vae,
@@ -190,7 +192,8 @@ def greet(audio, steps=25, scheduler="ddpm"):
190
  scheduler=use_sched,
191
  safety_checker=None,
192
  ).to(device)
193
- pipeline.enable_attention_slicing()
 
194
  # pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
195
  # pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
196
  print(f"taking {steps} steps using the {scheduler} scheduler")
 
35
  ):
36
 
37
  super().__init__()
38
+ self.repo_id = repo_id
39
  # Load scheduler and models
40
+ self.ddpm = DDPMScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
41
+ self.ddim = DDIMScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
42
+ self.pndm = PNDMScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
43
+ self.lms = LMSDiscreteScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
44
+ self.euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
45
+ self.euler = EulerDiscreteScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
46
+ self.dpm = DPMSolverMultistepScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
47
+ self.dpms = DPMSolverSinglestepScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
48
+ self.deis = DEISMultistepScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
49
+ self.unipc = UniPCMultistepScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
50
+ self.heun = HeunDiscreteScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
51
+ self.kdpm2_anc = KDPM2AncestralDiscreteScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
52
+ self.kdpm2 = KDPM2DiscreteScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
53
 
54
 
55
 
56
  self.tokenizer = CLIPTokenizer.from_pretrained(
57
+ self.repo_id, subfolder="tokenizer"
58
  )
59
  self.text_encoder = CLIPTextModel.from_pretrained(
60
+ self.repo_id, subfolder="text_encoder", revision=None
61
  )
62
  self.unet = UNet2DConditionModel.from_pretrained(
63
+ self.repo_id, subfolder="unet", revision=None
64
  )
65
  self.vae = AutoencoderKL.from_pretrained(
66
+ self.repo_id, subfolder="vae", revision=None
67
  )
68
 
69
  checkpoint = torch.load(
 
173
  audio_values = torch.unsqueeze(torch.tensor(audio), dim=0).to(device).to(dtype=weight_dtype)
174
  if audio_values.ndim == 1:
175
  audio_values = torch.unsqueeze(audio_values, dim=0)
176
+
177
+ # i dont know why but this seems mandatory for deterministic results
178
  with torch.no_grad():
 
179
  aud_features = model.aud_encoder.extract_features(audio_values)[1]
180
  audio_token = model.embedder(aud_features)
181
+ token_embeds = model.text_encoder.get_input_embeddings().weight.data
182
 
 
183
  token_embeds[model.placeholder_token_id] = audio_token.clone()
184
  g_gpu = torch.Generator(device='cuda')
185
+ g_gpu.manual_seed(23229249375547) # no reason this can't be input by the user!
186
  pipeline = StableDiffusionPipeline.from_pretrained(
187
+ pretrained_model_name_or_path=model.repo_id,
188
  tokenizer=model.tokenizer,
189
  text_encoder=model.text_encoder,
190
  vae=model.vae,
 
192
  scheduler=use_sched,
193
  safety_checker=None,
194
  ).to(device)
195
+ pipeline.enable_xformers_memory_efficient_attention()
196
+
197
  # pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
198
  # pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
199
  print(f"taking {steps} steps using the {scheduler} scheduler")