File size: 6,031 Bytes
ff66cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import numpy as np

from cliport.utils import utils
from cliport.agents.transporter import OriginalTransporterAgent
from cliport.models.core.attention import Attention
from cliport.models.core.attention_image_goal import AttentionImageGoal
from cliport.models.core.transport_image_goal import TransportImageGoal


class ImageGoalTransporterAgent(OriginalTransporterAgent):
    def __init__(self, name, cfg, train_ds, test_ds):
        super().__init__(name, cfg, train_ds, test_ds)

    def _build_model(self):
        stream_fcn = 'plain_resnet'
        self.attention = AttentionImageGoal(
            stream_fcn=(stream_fcn, None),
            in_shape=self.in_shape,
            n_rotations=1,
            preprocess=utils.preprocess,
            cfg=self.cfg,
            device=self.device_type,
        )
        self.transport = TransportImageGoal(
            stream_fcn=(stream_fcn, None),
            in_shape=self.in_shape,
            n_rotations=self.n_rotations,
            crop_size=self.crop_size,
            preprocess=utils.preprocess,
            cfg=self.cfg,
            device=self.device_type,
        )

    def attn_forward(self, inp, softmax=True):
        inp_img = inp['inp_img']
        goal_img = inp['goal_img']

        out = self.attention.forward(inp_img, goal_img, softmax=softmax)
        return out

    def attn_training_step(self, frame, goal, backprop=True, compute_err=False):
        inp_img = frame['img']
        goal_img = goal['img']
        p0, p0_theta = frame['p0'], frame['p0_theta']

        inp = {'inp_img': inp_img, 'goal_img': goal_img}
        out = self.attn_forward(inp, softmax=False)
        return self.attn_criterion(backprop, compute_err, inp, out, p0, p0_theta)

    def trans_forward(self, inp, softmax=True):
        inp_img = inp['inp_img']
        goal_img = inp['goal_img']
        p0 = inp['p0']

        out = self.transport.forward(inp_img, goal_img, p0, softmax=softmax)
        return out

    def transport_training_step(self, frame, goal, backprop=True, compute_err=False):
        inp_img = frame['img']
        goal_img = goal['img']
        p0 = frame['p0']
        p1, p1_theta = frame['p1'], frame['p1_theta']

        inp = {'inp_img': inp_img, 'goal_img': goal_img, 'p0': p0}
        out = self.trans_forward(inp, softmax=False)
        err, loss = self.transport_criterion(backprop, compute_err, inp, out, p0, p1, p1_theta)
        return loss, err

    def training_step(self, batch, batch_idx):
        self.attention.train()
        self.transport.train()
        frame, goal = batch

        # Get training losses.
        step = self.total_steps + 1
        loss0, err0 = self.attn_training_step(frame, goal)
        if isinstance(self.transport, Attention):
            loss1, err1 = self.attn_training_step(frame, goal)
        else:
            loss1, err1 = self.transport_training_step(frame, goal)
        total_loss = loss0 + loss1
        self.log('tr/attn/loss', loss0)
        self.log('tr/trans/loss', loss1)
        self.log('tr/loss', total_loss)
        self.total_steps = step

        self.trainer.train_loop.running_loss.append(total_loss)

        self.check_save_iteration()

        return dict(
            loss=total_loss,
        )

    def validation_step(self, batch, batch_idx):
        self.attention.eval()
        self.transport.eval()

        loss0, loss1 = 0, 0
        for i in range(self.val_repeats):
            frame, goal = batch
            l0, err0 = self.attn_training_step(frame, goal, backprop=False, compute_err=True)
            loss0 += l0
            if isinstance(self.transport, Attention):
                l1, err1 = self.attn_training_step(frame, goal, backprop=False, compute_err=True)
                loss1 += l1
            else:
                l1, err1 = self.transport_training_step(frame, goal, backprop=False, compute_err=True)
                loss1 += l1
        loss0 /= self.val_repeats
        loss1 /= self.val_repeats
        val_total_loss = loss0 + loss1

        self.trainer.evaluation_loop.trainer.train_loop.running_loss.append(val_total_loss)

        return dict(
            val_loss=val_total_loss,
            val_loss0=loss0,
            val_loss1=loss1,
            val_attn_dist_err=err0['dist'],
            val_attn_theta_err=err0['theta'],
            val_trans_dist_err=err1['dist'],
            val_trans_theta_err=err1['theta'],
        )

    def act(self, obs, info=None, goal=None):  # pylint: disable=unused-argument
        """Run inference and return best action given visual observations."""
        # Get heightmap from RGB-D images.
        img = self.test_ds.get_image(obs)
        goal_img = self.test_ds.get_image(goal[0])

        # Attention model forward pass.
        pick_conf = self.attention.forward(img, goal_img)
        pick_conf = pick_conf.detach().cpu().numpy()
        argmax = np.argmax(pick_conf)
        argmax = np.unravel_index(argmax, shape=pick_conf.shape)
        p0_pix = argmax[:2]
        p0_theta = argmax[2] * (2 * np.pi / pick_conf.shape[2])

        # Transport model forward pass.
        place_conf = self.transport.forward(img, goal_img, p0_pix)
        place_conf = place_conf.permute(1, 2, 0)
        place_conf = place_conf.detach().cpu().numpy()
        argmax = np.argmax(place_conf)
        argmax = np.unravel_index(argmax, shape=place_conf.shape)
        p1_pix = argmax[:2]
        p1_theta = argmax[2] * (2 * np.pi / place_conf.shape[2])

        # Pixels to end effector poses.
        hmap = img[:, :, 3]
        p0_xyz = utils.pix_to_xyz(p0_pix, hmap, self.bounds, self.pix_size)
        p1_xyz = utils.pix_to_xyz(p1_pix, hmap, self.bounds, self.pix_size)
        p0_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p0_theta))
        p1_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p1_theta))

        return {
            'pose0': (np.asarray(p0_xyz), np.asarray(p0_xyzw)),
            'pose1': (np.asarray(p1_xyz), np.asarray(p1_xyzw)),
            'pick': p0_pix,
            'place': p1_pix,
        }