File size: 44,422 Bytes
ff66cf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 |
"""Miscellaneous utilities."""
import cv2
import random
import matplotlib
import matplotlib.pyplot as plt
import meshcat
import meshcat.geometry as g
import meshcat.transformations as mtf
import PIL
import yaml
import numpy as np
from transforms3d import euler
import pybullet as p
import kornia
from omegaconf import OmegaConf
import os
import torch
import torchvision
# -----------------------------------------------------------------------------
# HEIGHTMAP UTILS
# -----------------------------------------------------------------------------
def get_heightmap(points, colors, bounds, pixel_size):
"""Get top-down (z-axis) orthographic heightmap image from 3D pointcloud.
Args:
points: HxWx3 float array of 3D points in world coordinates.
colors: HxWx3 uint8 array of values in range 0-255 aligned with points.
bounds: 3x2 float array of values (rows: X,Y,Z; columns: min,max) defining
region in 3D space to generate heightmap in world coordinates.
pixel_size: float defining size of each pixel in meters.
Returns:
heightmap: HxW float array of height (from lower z-bound) in meters.
colormap: HxWx3 uint8 array of backprojected color aligned with heightmap.
"""
width = int(np.round((bounds[0, 1] - bounds[0, 0]) / pixel_size))
height = int(np.round((bounds[1, 1] - bounds[1, 0]) / pixel_size))
heightmap = np.zeros((height, width), dtype=np.float32)
colormap = np.zeros((height, width, colors.shape[-1]), dtype=np.uint8)
# Filter out 3D points that are outside of the predefined bounds.
ix = (points[Ellipsis, 0] >= bounds[0, 0]) & (points[Ellipsis, 0] < bounds[0, 1])
iy = (points[Ellipsis, 1] >= bounds[1, 0]) & (points[Ellipsis, 1] < bounds[1, 1])
iz = (points[Ellipsis, 2] >= bounds[2, 0]) & (points[Ellipsis, 2] < bounds[2, 1])
valid = ix & iy & iz
points = points[valid]
colors = colors[valid]
# Sort 3D points by z-value, which works with array assignment to simulate
# z-buffering for rendering the heightmap image.
iz = np.argsort(points[:, -1])
points, colors = points[iz], colors[iz]
px = np.int32(np.floor((points[:, 0] - bounds[0, 0]) / pixel_size))
py = np.int32(np.floor((points[:, 1] - bounds[1, 0]) / pixel_size))
px = np.clip(px, 0, width - 1)
py = np.clip(py, 0, height - 1)
heightmap[py, px] = points[:, 2] - bounds[2, 0]
for c in range(colors.shape[-1]):
colormap[py, px, c] = colors[:, c]
return heightmap, colormap
def get_pointcloud(depth, intrinsics):
"""Get 3D pointcloud from perspective depth image.
Args:
depth: HxW float array of perspective depth in meters.
intrinsics: 3x3 float array of camera intrinsics matrix.
Returns:
points: HxWx3 float array of 3D points in camera coordinates.
"""
height, width = depth.shape
xlin = np.linspace(0, width - 1, width)
ylin = np.linspace(0, height - 1, height)
px, py = np.meshgrid(xlin, ylin)
px = (px - intrinsics[0, 2]) * (depth / intrinsics[0, 0])
py = (py - intrinsics[1, 2]) * (depth / intrinsics[1, 1])
points = np.float32([px, py, depth]).transpose(1, 2, 0)
return points
def transform_pointcloud(points, transform):
"""Apply rigid transformation to 3D pointcloud.
Args:
points: HxWx3 float array of 3D points in camera coordinates.
transform: 4x4 float array representing a rigid transformation matrix.
Returns:
points: HxWx3 float array of transformed 3D points.
"""
padding = ((0, 0), (0, 0), (0, 1))
homogen_points = np.pad(points.copy(), padding,
'constant', constant_values=1)
for i in range(3):
points[Ellipsis, i] = np.sum(transform[i, :] * homogen_points, axis=-1)
return points
def reconstruct_heightmaps(color, depth, configs, bounds, pixel_size):
"""Reconstruct top-down heightmap views from multiple 3D pointclouds."""
heightmaps, colormaps = [], []
for color, depth, config in zip(color, depth, configs):
intrinsics = np.array(config['intrinsics']).reshape(3, 3)
xyz = get_pointcloud(depth, intrinsics)
position = np.array(config['position']).reshape(3, 1)
rotation = p.getMatrixFromQuaternion(config['rotation'])
rotation = np.array(rotation).reshape(3, 3)
transform = np.eye(4)
transform[:3, :] = np.hstack((rotation, position))
xyz = transform_pointcloud(xyz, transform)
heightmap, colormap = get_heightmap(xyz, color, bounds, pixel_size)
heightmaps.append(heightmap)
colormaps.append(colormap)
return heightmaps, colormaps
def pix_to_xyz(pixel, height, bounds, pixel_size, skip_height=False):
"""Convert from pixel location on heightmap to 3D position."""
u, v = pixel
x = bounds[0, 0] + v * pixel_size
y = bounds[1, 0] + u * pixel_size
if not skip_height:
z = bounds[2, 0] + height[u, v]
else:
z = 0.0
return (x, y, z)
def xyz_to_pix(position, bounds, pixel_size):
"""Convert from 3D position to pixel location on heightmap."""
u = int(np.round((position[1] - bounds[1, 0]) / pixel_size))
v = int(np.round((position[0] - bounds[0, 0]) / pixel_size))
return (u, v)
def unproject_vectorized(uv_coordinates, depth_values,
intrinsic,
distortion):
"""Vectorized version of unproject(), for N points.
Args:
uv_coordinates: pixel coordinates to unproject of shape (n, 2).
depth_values: depth values corresponding index-wise to the uv_coordinates of
shape (n).
intrinsic: array of shape (3, 3). This is typically the return value of
intrinsics_to_matrix.
distortion: camera distortion parameters of shape (5,).
Returns:
xyz coordinates in camera frame of shape (n, 3).
"""
cam_mtx = intrinsic # shape [3, 3]
cam_dist = np.array(distortion) # shape [5]
# shape of points_undistorted is [N, 2] after the squeeze().
points_undistorted = cv2.undistortPoints(
uv_coordinates.reshape((-1, 1, 2)), cam_mtx, cam_dist).squeeze()
x = points_undistorted[:, 0] * depth_values
y = points_undistorted[:, 1] * depth_values
xyz = np.vstack((x, y, depth_values)).T
return xyz
def unproject_depth_vectorized(im_depth, depth_dist,
camera_mtx,
camera_dist):
"""Unproject depth image into 3D point cloud, using calibration.
Args:
im_depth: raw depth image, pre-calibration of shape (height, width).
depth_dist: depth distortion parameters of shape (8,)
camera_mtx: intrinsics matrix of shape (3, 3). This is typically the return
value of intrinsics_to_matrix.
camera_dist: camera distortion parameters shape (5,).
Returns:
numpy array of shape [3, H*W]. each column is xyz coordinates
"""
h, w = im_depth.shape
# shape of each u_map, v_map is [H, W].
u_map, v_map = np.meshgrid(np.linspace(
0, w - 1, w), np.linspace(0, h - 1, h))
adjusted_depth = depth_dist[0] + im_depth * depth_dist[1]
# shape after stack is [N, 2], where N = H * W.
uv_coordinates = np.stack((u_map.reshape(-1), v_map.reshape(-1)), axis=-1)
return unproject_vectorized(uv_coordinates, adjusted_depth.reshape(-1),
camera_mtx, camera_dist)
# -----------------------------------------------------------------------------
# MATH UTILS
# -----------------------------------------------------------------------------
def sample_distribution(prob, n_samples=1):
"""Sample data point from a custom distribution."""
flat_prob = prob.flatten() / np.sum(prob)
rand_ind = np.random.choice(
np.arange(len(flat_prob)), n_samples, p=flat_prob, replace=False)
rand_ind_coords = np.array(np.unravel_index(rand_ind, prob.shape)).T
return np.int32(rand_ind_coords.squeeze())
# -------------------------------------------------------------------------
# Transformation Helper Functions
# -------------------------------------------------------------------------
def invert(pose):
return p.invertTransform(pose[0], pose[1])
def multiply(pose0, pose1):
return p.multiplyTransforms(pose0[0], pose0[1], pose1[0], pose1[1])
def apply(pose, position):
position = np.float32(position)
position_shape = position.shape
position = np.float32(position).reshape(3, -1)
rotation = np.float32(p.getMatrixFromQuaternion(pose[1])).reshape(3, 3)
translation = np.float32(pose[0]).reshape(3, 1)
position = rotation @ position + translation
return tuple(position.reshape(position_shape))
def eulerXYZ_to_quatXYZW(rotation): # pylint: disable=invalid-name
"""Abstraction for converting from a 3-parameter rotation to quaterion.
This will help us easily switch which rotation parameterization we use.
Quaternion should be in xyzw order for pybullet.
Args:
rotation: a 3-parameter rotation, in xyz order tuple of 3 floats
Returns:
quaternion, in xyzw order, tuple of 4 floats
"""
euler_zxy = (rotation[2], rotation[0], rotation[1])
quaternion_wxyz = euler.euler2quat(*euler_zxy, axes='szxy')
q = quaternion_wxyz
quaternion_xyzw = (q[1], q[2], q[3], q[0])
return quaternion_xyzw
def quatXYZW_to_eulerXYZ(quaternion_xyzw): # pylint: disable=invalid-name
"""Abstraction for converting from quaternion to a 3-parameter toation.
This will help us easily switch which rotation parameterization we use.
Quaternion should be in xyzw order for pybullet.
Args:
quaternion_xyzw: in xyzw order, tuple of 4 floats
Returns:
rotation: a 3-parameter rotation, in xyz order, tuple of 3 floats
"""
q = quaternion_xyzw
quaternion_wxyz = np.array([q[3], q[0], q[1], q[2]])
euler_zxy = euler.quat2euler(quaternion_wxyz, axes='szxy')
euler_xyz = (euler_zxy[1], euler_zxy[2], euler_zxy[0])
return euler_xyz
def apply_transform(transform_to_from, points_from):
r"""Transforms points (3D) into new frame.
Using transform_to_from notation.
Args:
transform_to_from: numpy.ndarray of shape [B,4,4], SE3
points_from: numpy.ndarray of shape [B,3,N]
Returns:
points_to: numpy.ndarray of shape [B,3,N]
"""
num_points = points_from.shape[-1]
# non-batched
if len(transform_to_from.shape) == 2:
ones = np.ones((1, num_points))
# makes these each into homogenous vectors
points_from = np.vstack((points_from, ones)) # [4,N]
points_to = transform_to_from @ points_from # [4,N]
return points_to[0:3, :] # [3,N]
# batched
else:
assert len(transform_to_from.shape) == 3
batch_size = transform_to_from.shape[0]
zeros = np.ones((batch_size, 1, num_points))
points_from = np.concatenate((points_from, zeros), axis=1)
assert points_from.shape[1] == 4
points_to = transform_to_from @ points_from
return points_to[:, 0:3, :]
# -----------------------------------------------------------------------------
# IMAGE UTILS
# -----------------------------------------------------------------------------
def preprocess(img, dist='transporter'):
"""Pre-process input (subtract mean, divide by std)."""
transporter_color_mean = [0.18877631, 0.18877631, 0.18877631]
transporter_color_std = [0.07276466, 0.07276466, 0.07276466]
transporter_depth_mean = 0.00509261
transporter_depth_std = 0.00903967
franka_color_mean = [0.622291933, 0.628313992, 0.623031488]
franka_color_std = [0.168154213, 0.17626014, 0.184527364]
franka_depth_mean = 0.872146842
franka_depth_std = 0.195743116
clip_color_mean = [0.48145466, 0.4578275, 0.40821073]
clip_color_std = [0.26862954, 0.26130258, 0.27577711]
# choose distribution
if dist == 'clip':
color_mean = clip_color_mean
color_std = clip_color_std
elif dist == 'mdetr':
color_mean = [0.485, 0.456, 0.406]
color_std = [0.229, 0.224, 0.225]
elif dist == 'franka':
color_mean = franka_color_mean
color_std = franka_color_std
else:
color_mean = transporter_color_mean
color_std = transporter_color_std
if dist == 'franka':
depth_mean = franka_depth_mean
depth_std = franka_depth_std
else:
depth_mean = transporter_depth_mean
depth_std = transporter_depth_std
# convert to pytorch tensor (if required)
if type(img) == torch.Tensor:
def cast_shape(stat, img):
tensor = torch.from_numpy(np.array(stat)).to(device=img.device, dtype=img.dtype)
tensor = tensor.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
tensor = tensor.repeat(img.shape[0], 1, img.shape[-2], img.shape[-1])
return tensor
color_mean = cast_shape(color_mean, img)
color_std = cast_shape(color_std, img)
depth_mean = cast_shape(depth_mean, img)
depth_std = cast_shape(depth_std, img)
# normalize
img = img.clone()
img[:, :3, :, :] = ((img[:, :3, :, :] / 255 - color_mean) / color_std)
img[:, 3:, :, :] = ((img[:, 3:, :, :] - depth_mean) / depth_std)
else:
# normalize
img[:, :, :3] = (img[:, :, :3] / 255 - color_mean) / color_std
img[:, :, 3:] = (img[:, :, 3:] - depth_mean) / depth_std
# if dist == 'franka' or dist == 'transporter':
# print(np.mean(img[:,:3,:,:].detach().cpu().numpy(), axis=(0,2,3)),
# np.mean(img[:,3,:,:].detach().cpu().numpy()))
return img
def map_kit_scale(scale):
return (scale[0] / 10, scale[1] / 10, scale[2] / 10)
def deprocess(img):
color_mean = 0.18877631
depth_mean = 0.00509261
color_std = 0.07276466
depth_std = 0.00903967
img[:, :, :3] = np.uint8(((img[:, :, :3] * color_std) + color_mean) * 255)
img[:, :, 3:] = np.uint8(((img[:, :, 3:] * depth_std) + depth_mean) * 255)
return img
def get_fused_heightmap(obs, configs, bounds, pix_size):
"""Reconstruct orthographic heightmaps with segmentation masks."""
heightmaps, colormaps = reconstruct_heightmaps(
obs['color'], obs['depth'], configs, bounds, pix_size)
colormaps = np.float32(colormaps)
heightmaps = np.float32(heightmaps)
# Fuse maps from different views.
valid = np.sum(colormaps, axis=3) > 0
repeat = np.sum(valid, axis=0)
repeat[repeat == 0] = 1
cmap = np.sum(colormaps, axis=0) / repeat[Ellipsis, None]
cmap = np.uint8(np.round(cmap))
hmap = np.max(heightmaps, axis=0) # Max to handle occlusions.
return cmap, hmap
def get_image_transform(theta, trans, pivot=(0, 0)):
"""Compute composite 2D rigid transformation matrix."""
# Get 2D rigid transformation matrix that rotates an image by theta (in
# radians) around pivot (in pixels) and translates by trans vector (in
# pixels)
pivot_t_image = np.array([[1., 0., -pivot[0]], [0., 1., -pivot[1]],
[0., 0., 1.]])
image_t_pivot = np.array([[1., 0., pivot[0]], [0., 1., pivot[1]],
[0., 0., 1.]])
transform = np.array([[np.cos(theta), -np.sin(theta), trans[0]],
[np.sin(theta), np.cos(theta), trans[1]], [0., 0., 1.]])
return np.dot(image_t_pivot, np.dot(transform, pivot_t_image))
def check_transform(image, pixel, transform):
"""Valid transform only if pixel locations are still in FoV after transform."""
new_pixel = np.flip(
np.int32(
np.round(
np.dot(transform,
np.float32([pixel[1], pixel[0],
1.]).reshape(3, 1))))[:2].squeeze())
valid = np.all(
new_pixel >= 0
) and new_pixel[0] < image.shape[0] and new_pixel[1] < image.shape[1]
return valid, new_pixel
def get_se3_from_image_transform(theta, trans, pivot, heightmap, bounds,
pixel_size):
"""Calculate SE3 from image transform."""
position_center = pix_to_xyz(
np.flip(np.int32(np.round(pivot))),
heightmap,
bounds,
pixel_size,
skip_height=False)
new_position_center = pix_to_xyz(
np.flip(np.int32(np.round(pivot + trans))),
heightmap,
bounds,
pixel_size,
skip_height=True)
# Don't look up the z height, it might get augmented out of frame
new_position_center = (new_position_center[0], new_position_center[1],
position_center[2])
delta_position = np.array(new_position_center) - np.array(position_center)
t_world_center = np.eye(4)
t_world_center[0:3, 3] = np.array(position_center)
t_centernew_center = np.eye(4)
euler_zxy = (-theta, 0, 0)
t_centernew_center[0:3, 0:3] = euler.euler2mat(
*euler_zxy, axes='szxy')[0:3, 0:3]
t_centernew_center_tonly = np.eye(4)
t_centernew_center_tonly[0:3, 3] = -delta_position
t_centernew_center = t_centernew_center @ t_centernew_center_tonly
t_world_centernew = t_world_center @ np.linalg.inv(t_centernew_center)
return t_world_center, t_world_centernew
def get_random_image_transform_params(image_size, theta_sigma=60):
theta = np.random.normal(0, np.deg2rad(theta_sigma))
trans_sigma = np.min(image_size) / 6
trans = np.random.normal(0, trans_sigma, size=2) # [x, y]
pivot = (image_size[1] / 2, image_size[0] / 2)
return theta, trans, pivot
def q_mult(q1, q2):
w1, x1, y1, z1 = q1
w2, x2, y2, z2 = q2
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2
z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2
return (w, x, y, z)
def perturb(input_image, pixels, theta_sigma=60, add_noise=False):
"""Data augmentation on images."""
image_size = input_image.shape[:2]
# Compute random rigid transform.
while True:
theta, trans, pivot = get_random_image_transform_params(image_size, theta_sigma=theta_sigma)
transform = get_image_transform(theta, trans, pivot)
transform_params = theta, trans, pivot
# Ensure pixels remain in the image after transform.
is_valid = True
new_pixels = []
new_rounded_pixels = []
for pixel in pixels:
pixel = np.float32([pixel[1], pixel[0], 1.]).reshape(3, 1)
rounded_pixel = np.int32(np.round(transform @ pixel))[:2].squeeze()
rounded_pixel = np.flip(rounded_pixel)
pixel = (transform @ pixel)[:2].squeeze()
pixel = np.flip(pixel)
in_fov_rounded = rounded_pixel[0] < image_size[0] and rounded_pixel[
1] < image_size[1]
in_fov = pixel[0] < image_size[0] and pixel[1] < image_size[1]
is_valid = is_valid and np.all(rounded_pixel >= 0) and np.all(
pixel >= 0) and in_fov_rounded and in_fov
new_pixels.append(pixel)
new_rounded_pixels.append(rounded_pixel)
if is_valid:
break
# Apply rigid transform to image and pixel labels.
input_image = cv2.warpAffine(
input_image,
transform[:2, :], (image_size[1], image_size[0]),
flags=cv2.INTER_LINEAR)
# Apply noise
color = np.int32(input_image[:,:,:3])
depth = np.float32(input_image[:,:,3:])
if add_noise:
color += np.int32(np.random.normal(0, 3, image_size + (3,)))
color = np.uint8(np.clip(color, 0, 255))
depth += np.float32(np.random.normal(0, 0.003, image_size + (3,)))
input_image = np.concatenate((color, depth), axis=2)
# length of 5
transform_params = np.array([theta, trans[0], trans[1], pivot[0], pivot[1]])
return input_image, new_pixels, new_rounded_pixels, transform_params
def apply_perturbation(input_image, transform_params):
'''Apply data augmentation with specific transform params'''
image_size = input_image.shape[:2]
# Apply rigid transform to image and pixel labels.
theta, trans, pivot = transform_params[0], transform_params[1:3], transform_params[3:5]
transform = get_image_transform(theta, trans, pivot)
input_image = cv2.warpAffine(
input_image,
transform[:2, :], (image_size[1], image_size[0]),
flags=cv2.INTER_LINEAR)
return input_image
class ImageRotator:
"""Rotate for n rotations."""
# Reference: https://kornia.readthedocs.io/en/latest/tutorials/warp_affine.html?highlight=rotate
def __init__(self, n_rotations):
self.angles = []
for i in range(n_rotations):
theta = i * 2 * 180 / n_rotations
self.angles.append(theta)
def __call__(self, x_list, pivot, reverse=False):
rot_x_list = []
for i, angle in enumerate(self.angles):
x = x_list[i]# .unsqueeze(0)
# create transformation (rotation)
size = len(x)
alpha = angle if not reverse else (-1.0 * angle) # in degrees
angle = torch.ones(size) * alpha
# define the rotation center
if type(pivot) is not torch.Tensor:
center = torch.FloatTensor(pivot)[...,[1,0]]
center = center.view(1,-1).repeat((size,1))
else:
center = pivot[...,[1,0]].view(1,-1).clone().to(angle.device)
# center: torch.tensor = torch.ones(size, 2)
# center[..., 0] = int(pivot[1])
# center[..., 1] = int(pivot[0])
# define the scale factor
scale = torch.ones(size, 2)
# # compute the transformation matrix
M = kornia.geometry.get_rotation_matrix2d(center, angle, scale)
# x_warped = torchvision.transforms.functional.affine(x.float(), scale=1.,
# center=[int(pivot[1]),int(pivot[0])],
# angle=alpha, translate=[0,0], shear=0,
# interpolation= torchvision.transforms.InterpolationMode.BILINEAR)
# apply the transformation to original image
# M = M.repeat(len(x), 1, 1)
_, _, h, w = x.shape
x_warped = kornia.geometry.transform.warp_affine(x.float(), M.to(x.device), dsize=(h, w))
x_warped = x_warped
rot_x_list.append(x_warped)
return rot_x_list
# KD Tree Utils
# Construct K-D Tree to roughly estimate how many objects can fit inside the box.
class TreeNode:
def __init__(self, parent, children, bbox):
self.parent = parent
self.children = children
self.bbox = bbox # min x, min y, min z, max x, max y, max z
def KDTree(node, min_object_dim, margin, bboxes):
size = node.bbox[3:] - node.bbox[:3]
# Choose which axis to split.
split = size > 2 * min_object_dim
if np.sum(split) == 0:
bboxes.append(node.bbox)
return
split = np.float32(split) / np.sum(split)
split_axis = np.random.choice(range(len(split)), 1, p=split)[0]
# Split along chosen axis and create 2 children
cut_ind = np.random.rand() * \
(size[split_axis] - 2 * min_object_dim) + \
node.bbox[split_axis] + min_object_dim
child1_bbox = node.bbox.copy()
child1_bbox[3 + split_axis] = cut_ind - margin / 2.
child2_bbox = node.bbox.copy()
child2_bbox[split_axis] = cut_ind + margin / 2.
node.children = [
TreeNode(node, [], bbox=child1_bbox),
TreeNode(node, [], bbox=child2_bbox)
]
KDTree(node.children[0], min_object_dim, margin, bboxes)
KDTree(node.children[1], min_object_dim, margin, bboxes)
# -----------------------------------------------------------------------------
# Shape Name UTILS
# -----------------------------------------------------------------------------
google_seen_obj_shapes = {
'train': [
'alarm clock',
'android toy',
'black boot with leopard print',
'black fedora',
'black razer mouse',
'black sandal',
'black shoe with orange stripes',
'bull figure',
'butterfinger chocolate',
'c clamp',
'can opener',
'crayon box',
'dog statue',
'frypan',
'green and white striped towel',
'grey soccer shoe with cleats',
'hard drive',
'honey dipper',
'magnifying glass',
'mario figure',
'nintendo 3ds',
'nintendo cartridge',
'office depot box',
'orca plush toy',
'pepsi gold caffeine free box',
'pepsi wild cherry box',
'porcelain cup',
'purple tape',
'red and white flashlight',
'rhino figure',
'rocket racoon figure',
'scissors',
'silver tape',
'spatula with purple head',
'spiderman figure',
'tablet',
'toy school bus',
],
'val': [
'ball puzzle',
'black and blue sneakers',
'black shoe with green stripes',
'brown fedora',
'dinosaur figure',
'hammer',
'light brown boot with golden laces',
'lion figure',
'pepsi max box',
'pepsi next box',
'porcelain salad plate',
'porcelain spoon',
'red and white striped towel',
'red cup',
'screwdriver',
'toy train',
'unicorn toy',
'white razer mouse',
'yoshi figure'
],
'test': [
'ball puzzle',
'black and blue sneakers',
'black shoe with green stripes',
'brown fedora',
'dinosaur figure',
'hammer',
'light brown boot with golden laces',
'lion figure',
'pepsi max box',
'pepsi next box',
'porcelain salad plate',
'porcelain spoon',
'red and white striped towel',
'red cup',
'screwdriver',
'toy train',
'unicorn toy',
'white razer mouse',
'yoshi figure'
],
}
google_unseen_obj_shapes = {
'train': [
'alarm clock',
'android toy',
'black boot with leopard print',
'black fedora',
'black razer mouse',
'black sandal',
'black shoe with orange stripes',
'bull figure',
'butterfinger chocolate',
'c clamp',
'can opener',
'crayon box',
'dog statue',
'frypan',
'green and white striped towel',
'grey soccer shoe with cleats',
'hard drive',
'honey dipper',
'magnifying glass',
'mario figure',
'nintendo 3ds',
'nintendo cartridge',
'office depot box',
'orca plush toy',
'pepsi gold caffeine free box',
'pepsi wild cherry box',
'porcelain cup',
'purple tape',
'red and white flashlight',
'rhino figure',
'rocket racoon figure',
'scissors',
'silver tape',
'spatula with purple head',
'spiderman figure',
'tablet',
'toy school bus',
],
'val': [
'ball puzzle',
'black and blue sneakers',
'black shoe with green stripes',
'brown fedora',
'dinosaur figure',
'hammer',
'light brown boot with golden laces',
'lion figure',
'pepsi max box',
'pepsi next box',
'porcelain salad plate',
'porcelain spoon',
'red and white striped towel',
'red cup',
'screwdriver',
'toy train',
'unicorn toy',
'white razer mouse',
'yoshi figure'
],
'test': [
'ball puzzle',
'black and blue sneakers',
'black shoe with green stripes',
'brown fedora',
'dinosaur figure',
'hammer',
'light brown boot with golden laces',
'lion figure',
'pepsi max box',
'pepsi next box',
'porcelain salad plate',
'porcelain spoon',
'red and white striped towel',
'red cup',
'screwdriver',
'toy train',
'unicorn toy',
'white razer mouse',
'yoshi figure'
],
}
google_all_shapes = {
'train': [
'alarm clock',
'android toy',
'ball puzzle',
'black and blue sneakers',
'black boot with leopard print',
'black fedora',
'black razer mouse',
'black sandal',
'black shoe with green stripes',
'black shoe with orange stripes',
'brown fedora',
'bull figure',
'butterfinger chocolate',
'c clamp',
'can opener',
'crayon box',
'dinosaur figure',
'dog statue',
'frypan',
'green and white striped towel',
'grey soccer shoe with cleats',
'hammer',
'hard drive',
'honey dipper',
'light brown boot with golden laces',
'lion figure',
'magnifying glass',
'mario figure',
'nintendo 3ds',
'nintendo cartridge',
'office depot box',
'orca plush toy',
'pepsi gold caffeine free box',
'pepsi max box',
'pepsi next box',
'pepsi wild cherry box',
'porcelain cup',
'porcelain salad plate',
'porcelain spoon',
'purple tape',
'red and white flashlight',
'red and white striped towel',
'red cup',
'rhino figure',
'rocket racoon figure',
'scissors',
'screwdriver',
'silver tape',
'spatula with purple head',
'spiderman figure',
'tablet',
'toy school bus',
'toy train',
'unicorn toy',
'white razer mouse',
'yoshi figure',
],
'val': [
'alarm clock',
'android toy',
'ball puzzle',
'black and blue sneakers',
'black boot with leopard print',
'black fedora',
'black razer mouse',
'black sandal',
'black shoe with green stripes',
'black shoe with orange stripes',
'brown fedora',
'bull figure',
'butterfinger chocolate',
'c clamp',
'can opener',
'crayon box',
'dinosaur figure',
'dog statue',
'frypan',
'green and white striped towel',
'grey soccer shoe with cleats',
'hammer',
'hard drive',
'honey dipper',
'light brown boot with golden laces',
'lion figure',
'magnifying glass',
'mario figure',
'nintendo 3ds',
'nintendo cartridge',
'office depot box',
'orca plush toy',
'pepsi gold caffeine free box',
'pepsi max box',
'pepsi next box',
'pepsi wild cherry box',
'porcelain cup',
'porcelain salad plate',
'porcelain spoon',
'purple tape',
'red and white flashlight',
'red and white striped towel',
'red cup',
'rhino figure',
'rocket racoon figure',
'scissors',
'screwdriver',
'silver tape',
'spatula with purple head',
'spiderman figure',
'tablet',
'toy school bus',
'toy train',
'unicorn toy',
'white razer mouse',
'yoshi figure',
],
'test': [
'alarm clock',
'android toy',
'ball puzzle',
'black and blue sneakers',
'black boot with leopard print',
'black fedora',
'black razer mouse',
'black sandal',
'black shoe with green stripes',
'black shoe with orange stripes',
'brown fedora',
'bull figure',
'butterfinger chocolate',
'c clamp',
'can opener',
'crayon box',
'dinosaur figure',
'dog statue',
'frypan',
'green and white striped towel',
'grey soccer shoe with cleats',
'hammer',
'hard drive',
'honey dipper',
'light brown boot with golden laces',
'lion figure',
'magnifying glass',
'mario figure',
'nintendo 3ds',
'nintendo cartridge',
'office depot box',
'orca plush toy',
'pepsi gold caffeine free box',
'pepsi max box',
'pepsi next box',
'pepsi wild cherry box',
'porcelain cup',
'porcelain salad plate',
'porcelain spoon',
'purple tape',
'red and white flashlight',
'red and white striped towel',
'red cup',
'rhino figure',
'rocket racoon figure',
'scissors',
'screwdriver',
'silver tape',
'spatula with purple head',
'spiderman figure',
'tablet',
'toy school bus',
'toy train',
'unicorn toy',
'white razer mouse',
'yoshi figure',
],
}
assembling_kit_shapes = {
0: "letter R shape",
1: "letter A shape",
2: "triangle",
3: "square",
4: "plus",
5: "letter T shape",
6: "diamond",
7: "pentagon",
8: "rectangle",
9: "flower",
10: "star",
11: "circle",
12: "letter G shape",
13: "letter V shape",
14: "letter E shape",
15: "letter L shape",
16: "ring",
17: "hexagon",
18: "heart",
19: "letter M shape",
}
# -----------------------------------------------------------------------------
# COLOR AND PLOT UTILS
# -----------------------------------------------------------------------------
# Colors (Tableau palette).
COLORS = {
'blue': [78.0 / 255.0, 121.0 / 255.0, 167.0 / 255.0],
'red': [255.0 / 255.0, 087.0 / 255.0, 089.0 / 255.0],
'green': [089.0 / 255.0, 169.0 / 255.0, 078.0 / 255.0],
'orange': [242.0 / 255.0, 142.0 / 255.0, 043.0 / 255.0],
'yellow': [237.0 / 255.0, 201.0 / 255.0, 072.0 / 255.0],
'purple': [176.0 / 255.0, 122.0 / 255.0, 161.0 / 255.0],
'pink': [255.0 / 255.0, 157.0 / 255.0, 167.0 / 255.0],
'cyan': [118.0 / 255.0, 183.0 / 255.0, 178.0 / 255.0],
'brown': [156.0 / 255.0, 117.0 / 255.0, 095.0 / 255.0],
'white': [255.0 / 255.0, 255.0 / 255.0, 255.0 / 255.0],
'gray': [186.0 / 255.0, 176.0 / 255.0, 172.0 / 255.0],
'indigo': [75.0 / 255.0, 0.0 / 255.0, 130.0 / 255.0],
'violet': [143.0 / 255.0, 0.0 / 255.0, 255.0 / 255.0],
'black': [0.0 / 255.0, 0.0 / 255.0, 0.0 / 255.0],
'silver': [192.0 / 255.0, 192.0 / 255.0, 192.0 / 255.0],
'gold': [255.0 / 255.0, 215.0 / 255.0, 0.0 / 255.0],
}
COLORS_NAMES = list(COLORS.keys())
TRAIN_COLORS = ['blue', 'red', 'green', 'yellow', 'brown', 'gray', 'cyan']
EVAL_COLORS = ['blue', 'red', 'green', 'orange', 'purple', 'pink', 'white']
def get_colors(mode, n_colors=-1, **kwargs):
all_color_names = get_colors_names(mode)
if n_colors == -1:
all_color_names = all_color_names
else:
all_color_names = random.sample(all_color_names, n_colors)
return [COLORS[cn] for cn in all_color_names], all_color_names
def get_colors_names(mode):
if mode == 'train':
return TRAIN_COLORS
elif mode == 'full':
return TRAIN_COLORS
else:
return TRAIN_COLORS
def get_random_color():
return get_colors(mode='train', n_colors=1)
def solve_hanoi_all(n_disks):
# Solve Hanoi sequence with dynamic programming.
hanoi_steps = [] # [[object index, from rod, to rod], ...]
def solve_hanoi(n, t0, t1, t2):
if n == 0:
hanoi_steps.append([n, t0, t1])
return
solve_hanoi(n - 1, t0, t2, t1)
hanoi_steps.append([n, t0, t1])
solve_hanoi(n - 1, t2, t1, t0)
solve_hanoi(n_disks - 1, 0, 2, 1)
return hanoi_steps
def plot(fname, # pylint: disable=dangerous-default-value
title,
ylabel,
xlabel,
data,
xlim=[-np.inf, 0],
xticks=None,
ylim=[np.inf, -np.inf],
show_std=True):
"""Plot frame data."""
# Data is a dictionary that maps experiment names to tuples with 3
# elements: x (size N array) and y (size N array) and y_std (size N array)
# Get data limits.
for name, (x, y, _) in data.items():
del name
y = np.array(y)
xlim[0] = max(xlim[0], np.min(x))
xlim[1] = max(xlim[1], np.max(x))
ylim[0] = min(ylim[0], np.min(y))
ylim[1] = max(ylim[1], np.max(y))
# Draw background.
plt.title(title, fontsize=14)
plt.ylim(ylim)
plt.ylabel(ylabel, fontsize=14)
plt.yticks(fontsize=14)
plt.xlim(xlim)
plt.xlabel(xlabel, fontsize=14)
plt.grid(True, linestyle='-', color=[0.8, 0.8, 0.8])
ax = plt.gca()
for axis in ['top', 'bottom', 'left', 'right']:
ax.spines[axis].set_color('#000000')
plt.rcParams.update({'font.size': 14})
plt.rcParams['mathtext.default'] = 'regular'
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
# Draw data.
color_iter = 0
for name, (x, y, std) in data.items():
del name
x, y, std = np.float32(x), np.float32(y), np.float32(std)
upper = np.clip(y + std, ylim[0], ylim[1])
lower = np.clip(y - std, ylim[0], ylim[1])
color = COLORS[list(COLORS.keys())[color_iter]]
if show_std:
plt.fill_between(x, upper, lower, color=color, linewidth=0, alpha=0.3)
plt.plot(x, y, color=color, linewidth=2, marker='o', alpha=1.)
color_iter += 1
if xticks:
plt.xticks(ticks=range(len(xticks)), labels=xticks, fontsize=14)
else:
plt.xticks(fontsize=14)
plt.legend([name for name, _ in data.items()],
loc='lower right', fontsize=14)
plt.tight_layout()
plt.savefig(fname)
plt.clf()
# -----------------------------------------------------------------------------
# MESHCAT UTILS
# -----------------------------------------------------------------------------
def create_visualizer(clear=True):
print('Waiting for meshcat server... have you started a server?')
vis = meshcat.Visualizer(zmq_url='tcp://127.0.0.1:6000')
if clear:
vis.delete()
return vis
def make_frame(vis, name, h, radius, o=1.0):
"""Add a red-green-blue triad to the Meschat visualizer.
Args:
vis (MeshCat Visualizer): the visualizer
name (string): name for this frame (should be unique)
h (float): height of frame visualization
radius (float): radius of frame visualization
o (float): opacity
"""
vis[name]['x'].set_object(
g.Cylinder(height=h, radius=radius),
g.MeshLambertMaterial(color=0xff0000, reflectivity=0.8, opacity=o))
rotate_x = mtf.rotation_matrix(np.pi / 2.0, [0, 0, 1])
rotate_x[0, 3] = h / 2
vis[name]['x'].set_transform(rotate_x)
vis[name]['y'].set_object(
g.Cylinder(height=h, radius=radius),
g.MeshLambertMaterial(color=0x00ff00, reflectivity=0.8, opacity=o))
rotate_y = mtf.rotation_matrix(np.pi / 2.0, [0, 1, 0])
rotate_y[1, 3] = h / 2
vis[name]['y'].set_transform(rotate_y)
vis[name]['z'].set_object(
g.Cylinder(height=h, radius=radius),
g.MeshLambertMaterial(color=0x0000ff, reflectivity=0.8, opacity=o))
rotate_z = mtf.rotation_matrix(np.pi / 2.0, [1, 0, 0])
rotate_z[2, 3] = h / 2
vis[name]['z'].set_transform(rotate_z)
def meshcat_visualize(vis, obs, act, info):
"""Visualize data using meshcat."""
for key in sorted(info.keys()):
pose = info[key]
pick_transform = np.eye(4)
pick_transform[0:3, 3] = pose[0]
quaternion_wxyz = np.asarray(
[pose[1][3], pose[1][0], pose[1][1], pose[1][2]])
pick_transform[0:3, 0:3] = mtf.quaternion_matrix(quaternion_wxyz)[0:3, 0:3]
label = 'obj_' + str(key)
make_frame(vis, label, h=0.05, radius=0.0012, o=1.0)
vis[label].set_transform(pick_transform)
for cam_index in range(len(act['camera_config'])):
verts = unproject_depth_vectorized(
obs['depth'][cam_index], np.array([0, 1]),
np.array(act['camera_config'][cam_index]['intrinsics']).reshape(3, 3),
np.zeros(5))
# switch from [N,3] to [3,N]
verts = verts.T
cam_transform = np.eye(4)
cam_transform[0:3, 3] = act['camera_config'][cam_index]['position']
quaternion_xyzw = act['camera_config'][cam_index]['rotation']
quaternion_wxyz = np.asarray([
quaternion_xyzw[3], quaternion_xyzw[0], quaternion_xyzw[1],
quaternion_xyzw[2]
])
cam_transform[0:3, 0:3] = mtf.quaternion_matrix(quaternion_wxyz)[0:3, 0:3]
verts = apply_transform(cam_transform, verts)
colors = obs['color'][cam_index].reshape(-1, 3).T / 255.0
vis['pointclouds/' + str(cam_index)].set_object(
g.PointCloud(position=verts, color=colors))
# -----------------------------------------------------------------------------
# CONFIG UTILS
# -----------------------------------------------------------------------------
def set_seed(seed, torch=False):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
if torch:
import torch
torch.manual_seed(seed)
def load_cfg(yaml_path):
with open(yaml_path, 'r') as f:
data = yaml.safe_load(f)
return data
def load_hydra_config(config_path):
return OmegaConf.load(config_path)
|