File size: 4,552 Bytes
ff66cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import cv2
import numpy as np
import IPython
import os

import openai
import pandas as pd
import json
import subprocess


# create dataset by loading the python file
def format_prompt(task_name):
    instruction_text = open('misc/finetune_instructions_prompt.txt').read()
    instruction_text = instruction_text.replace("TASK_NAME_TEMPLATE", task_name)
    prompt_text = "\n Instructions: "  + instruction_text + "\n\n###\n\n"
    return prompt_text

def format_completion(task_name, descriptions, code):
    completion_text = f" \nDescriptions: \n  ```{task_name}: {descriptions} \n\n###\n\n"
    completion_text += "Implementation: \n  ```python\n" + code  + "<|endoftext|>"
    return completion_text

# test if using the finetuned model can generate better task coed than the base model
# https://platform.openai.com/docs/guides/fine-tuning
data_path = 'prompts/data'
def load_offline_memory():
    """get the current task descriptions, assets, and code"""
    base_task_path = os.path.join(data_path, "base_tasks.json")
    base_asset_path = os.path.join(data_path, "base_assets.json")
    base_task_code_path = os.path.join(data_path, "base_task_codes.json")

    base_tasks = json.load(open(base_task_path))
    base_assets = json.load(open(base_asset_path))
    base_task_codes = json.load(open(base_task_code_path))

    generated_task_path = os.path.join(data_path, "generated_tasks.json")
    generated_asset_path = os.path.join(data_path, "generated_assets.json")
    generated_task_code_path = os.path.join(data_path, "generated_task_codes.json")

    # print("original base task num:", len(base_tasks))
    base_tasks.update(json.load(open(generated_task_path)))
    # base_assets.update(json.load(open(generated_asset_path)))

    for task in json.load(open(generated_task_code_path)):
        if task not in base_task_codes:
          base_task_codes.append(task)

        # print("current base task num:", len(base_tasks))
    return base_tasks, base_assets, base_task_codes


code_buffer = {}
base_tasks, base_assets, base_task_codes = load_offline_memory()
TOTAL_DATASET_TOKENS = 0

added_tasks = []
df = pd.DataFrame()
for task_file in base_task_codes:
    ## TODO(lirui): consider adding more structure here.
    task_name = task_file[:-3].replace("_", "-")
    if task_name in added_tasks:
        continue

    if task_name not in base_tasks:
        print(f"{task_name} missing")
        continue

    added_tasks.append(task_name)
    task_description = base_tasks[task_name]

    if os.path.exists("cliport/tasks/" + task_file):
        task_code = open("cliport/tasks/" + task_file).read()

        # the generated cliport task path
    elif os.path.exists("cliport/generated_tasks/" + task_file):
        task_code = open("cliport/generated_tasks/" + task_file).read()

    prompt = format_prompt(task_name)
    completion = format_completion(task_name, task_description, task_code)

    # rough estimates
    TOTAL_DATASET_TOKENS += len(prompt) / 4
    TOTAL_DATASET_TOKENS += len(completion) / 4

    new_row = {"messages": [{"role": "system", "content": "You are an AI in robot simulation code and task design."},
    {"role": "user", "content": prompt}, {
    "role": "assistant", "content": completion}]}
    new_row = pd.DataFrame([new_row])
    df = pd.concat([df, new_row], axis=0, ignore_index=True)

df.to_csv("misc/finetune_data.csv",index=False)
print("======================================")
print("estimate number of tokens:", TOTAL_DATASET_TOKENS)
print("estimate price for davinci:", TOTAL_DATASET_TOKENS / 1000 * 0.03)
print("total number of instructions:", len(df))
print("======================================")
# actual finetuning

## prepared_data.csv --> prepared_data_prepared.json
subprocess.run('openai tools fine_tunes.prepare_data --file misc/finetune_data.csv --quiet'.split())

print("now you can run \n openai api fine_tunes.create --training_file output/finetune_data_prepared.jsonl --model davinci --suffix 'GenSim'")
# Model    Training    Usage
# Ada $0.0004 / 1K tokens $0.0016 / 1K tokens
# Curie   $0.0030 / 1K tokens $0.0120 / 1K tokens
# Davinci $0.0300 / 1K tokens $0.1200 / 1K tokens

# ## Start fine-tuning
# openai api fine_tunes.create --training_file output/finetune_data_prepared.jsonl --model davinci --suffix "GenSim"
# subprocess.run('openai api fine_tunes.create --training_file output/finetune_data_prepared.jsonl --model davinci --suffix "GenSim"'.split())


# Tracking Finetune Status
# openai api fine_tunes.follow -i
# openai api fine_tunes.get -i
# openai wandb sync