#!/bin/bash DATA_DIR=$1 TASK=$2 DISP=False echo "Training dataset... Folder: $DATA_DIR Task $TASK" # You can parallelize these depending on how much resources you have ############################# ## Language-Conditioned Tasks trap "kill 0" SIGINT LANG_TASKS=$2 for task in $LANG_TASKS do # Generate data bash scripts/regenerate_gpt_datasets.sh data $task # TRAIN python cliport/train.py train.task=$task \ train.agent=cliport \ train.attn_stream_fusion_type=add \ train.trans_stream_fusion_type=conv \ train.lang_fusion_type=mult \ train.n_demos=200 \ train.n_steps=5000 \ train.exp_folder=exps/exps-singletask \ dataset.cache=True \ train.batch=2 \ record.save_video=False # EVAL # python cliport/eval.py eval_task=$task \ # agent=cliport \ # mode=val \ # n_demos=100 \ # train_demos=100 \ # checkpoint_type=val_missing \ # exp_folder=exps # TEST python cliport/eval.py eval_task=$task \ agent=cliport \ mode=test \ n_demos=100 \ train_demos=200 \ checkpoint_type=test_best \ exp_folder=exps/exps-singletask \ update_results=True \ record.save_video=False done python notebooks/print_results.py -r=exps/exps-singletask echo "Finished Training."