File size: 17,291 Bytes
ff66cf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import numpy as np
import os
import IPython
from cliport import tasks
from cliport.dataset import RavensDataset
from cliport.environments.environment import Environment
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import TerminalFormatter
import time
import random
import json
import traceback
from gensim.utils import (
mkdir_if_missing,
save_text,
save_stat,
compute_diversity_score_from_assets,
add_to_txt
)
import pybullet as p
class SimulationRunner:
""" the main class that runs simulation loop """
def __init__(self, cfg, agent, critic, memory):
self.cfg = cfg
self.agent = agent
self.critic = critic
self.memory = memory
# statistics
self.syntax_pass_rate = 0
self.runtime_pass_rate = 0
self.env_pass_rate = 0
self.curr_trials = 0
self.prompt_folder = f"prompts/{cfg['prompt_folder']}"
self.chat_log = memory.chat_log
self.task_asset_logs = []
# All the generated tasks in this run.
# Different from the ones in online buffer that can load from offline.
self.generated_task_assets = []
self.generated_task_programs = []
self.generated_task_names = []
self.generated_tasks = []
self.passed_tasks = [] # accepted ones
def print_current_stats(self):
""" print the current statistics of the simulation design """
print("=========================================================")
print(f"{self.cfg['prompt_folder']} Trial {self.curr_trials} SYNTAX_PASS_RATE: {(self.syntax_pass_rate / (self.curr_trials)) * 100:.1f}% RUNTIME_PASS_RATE: {(self.runtime_pass_rate / (self.curr_trials)) * 100:.1f}% ENV_PASS_RATE: {(self.env_pass_rate / (self.curr_trials)) * 100:.1f}%")
print("=========================================================")
def save_stats(self):
""" save the final simulation statistics """
self.diversity_score = compute_diversity_score_from_assets(self.task_asset_logs, self.curr_trials)
save_stat(self.cfg, self.cfg['model_output_dir'], self.generated_tasks, self.syntax_pass_rate / (self.curr_trials),
self.runtime_pass_rate / (self.curr_trials), self.env_pass_rate / (self.curr_trials), self.diversity_score)
print("Model Folder: ", self.cfg['model_output_dir'])
print(f"Total {len(self.generated_tasks)} New Tasks:", [task['task-name'] for task in self.generated_tasks])
try:
print(f"Added {len(self.passed_tasks)} Tasks:", self.passed_tasks)
except:
pass
def example_task_creation(self):
""" create the task through interactions of agent and critic """
self.task_creation_pass = True
mkdir_if_missing(self.cfg['model_output_dir'])
try:
start_time = time.time()
self.generated_task = {'task-name': 'TASK_NAME_TEMPLATE', 'task-description': 'TASK_STRING_TEMPLATE', 'assets-used': ['ASSET_1', 'ASSET_2', Ellipsis]}
print("generated_task\n", self.generated_task)
yield "Task Generated ==>", None, None
self.generated_asset = self.agent.propose_assets()
# self.generated_asset = {}
print("generated_asset\n", self.generated_asset)
yield "Task Generated ==> Asset Generated ==> ", None, None
yield "Task Generated ==> Asset Generated ==> API Reviewed ==> ", None, None
yield "Task Generated ==> Asset Generated ==> API Reviewed ==> Error Reviewed ==> ", None, None
self.curr_task_name = self.generated_task_name = 'BuildWheel'
self.generated_code = """
import numpy as np
from cliport.tasks.task import Task
from cliport.utils import utils
class BuildWheel(Task):
def __init__(self):
super().__init__()
self.max_steps = 10
self.lang_template = "Construct a wheel using blocks and a sphere. First, position eight blocks in a circular layout on the tabletop. Each block should be touching its two neighbors and colored in alternating red and blue. Then place a green sphere in the center of the circular layout, completing the wheel."
self.task_completed_desc = "done building wheel."
self.additional_reset()
def reset(self, env):
super().reset(env)
# Add blocks.
block_size = (0.04, 0.04, 0.04)
block_urdf = 'block/block.urdf'
block_colors = [utils.COLORS['red'], utils.COLORS['blue']]
blocks = []
for i in range(8):
block_pose = self.get_random_pose(env, block_size)
block_id = env.add_object(block_urdf, block_pose, color=block_colors[i % 2])
blocks.append(block_id)
# Add sphere.
sphere_size = (0.04, 0.04, 0.04)
sphere_urdf = 'sphere/sphere.urdf'
sphere_color = utils.COLORS['green']
sphere_pose = ((0.5, 0.0, 0.0), (0,0,0,1)) # fixed pose
sphere_id = env.add_object(sphere_urdf, sphere_pose, color=sphere_color)
# Goal: blocks are arranged in a circle and sphere is in the center.
circle_radius = 0.1
circle_center = (0, 0, block_size[2] / 2)
angles = np.linspace(0, 2 * np.pi, 8, endpoint=False)
block_poses = [(circle_center[0] + circle_radius * np.cos(angle),
circle_center[1] + circle_radius * np.sin(angle),
circle_center[2]) for angle in angles]
block_poses = [(utils.apply(sphere_pose, pos), sphere_pose[1]) for pos in block_poses]
self.add_goal(objs=blocks, matches=np.ones((8, 8)), targ_poses=block_poses, replace=False,
rotations=True, metric='pose', params=None, step_max_reward=8 / 9)
# Goal: sphere is in the center of the blocks.
self.add_goal(objs=[sphere_id], matches=np.ones((1, 1)), targ_poses=[sphere_pose], replace=False,
rotations=False, metric='pose', params=None, step_max_reward=1 / 9)
self.lang_goals.append(self.lang_template)
"""
print("generated_code\n", self.generated_code)
print("curr_task_name\n", self.curr_task_name)
yield "Task Generated ==> Asset Generated ==> API Reviewed ==> Error Reviewed ==> Code Generated ==> ", self.generated_code, None
self.generated_tasks.append(self.generated_task)
self.generated_task_assets.append(self.generated_asset)
self.generated_task_programs.append(self.generated_code)
self.generated_task_names.append(self.generated_task_name)
except:
to_print = highlight(f"{str(traceback.format_exc())}", PythonLexer(), TerminalFormatter())
print("Task Creation Exception:", to_print)
self.task_creation_pass = False
# self.curr_task_name = self.generated_task['task-name']
print("task creation time {:.3f}".format(time.time() - start_time))
def task_creation(self):
""" create the task through interactions of agent and critic """
self.task_creation_pass = True
mkdir_if_missing(self.cfg['model_output_dir'])
try:
start_time = time.time()
self.generated_task = self.agent.propose_task(self.generated_task_names)
# self.generated_task = {'task-name': 'TASK_NAME_TEMPLATE', 'task-description': 'TASK_STRING_TEMPLATE', 'assets-used': ['ASSET_1', 'ASSET_2', Ellipsis]}
print("generated_task\n", self.generated_task)
yield "Task Generated ==>", None, None
self.generated_asset = self.agent.propose_assets()
# self.generated_asset = {}
print("generated_asset\n", self.generated_asset)
yield "Task Generated ==> Asset Generated ==> ", None, None
self.agent.api_review()
yield "Task Generated ==> Asset Generated ==> API Reviewed ==> ", None, None
self.critic.error_review(self.generated_task)
yield "Task Generated ==> Asset Generated ==> API Reviewed ==> Error Reviewed ==> ", None, None
self.generated_code, self.curr_task_name = self.agent.implement_task()
self.task_asset_logs.append(self.generated_task["assets-used"])
self.generated_task_name = self.generated_task["task-name"]
# self.curr_task_name = self.generated_task_name = 'BuildWheel'
#
# self.generated_code = """
# import numpy as np
# from cliport.tasks.task import Task
# from cliport.utils import utils
#
# class BuildWheel(Task):
#
# def __init__(self):
# super().__init__()
# self.max_steps = 10
# self.lang_template = "Construct a wheel using blocks and a sphere. First, position eight blocks in a circular layout on the tabletop. Each block should be touching its two neighbors and colored in alternating red and blue. Then place a green sphere in the center of the circular layout, completing the wheel."
# self.task_completed_desc = "done building wheel."
# self.additional_reset()
#
# def reset(self, env):
# super().reset(env)
#
# # Add blocks.
# block_size = (0.04, 0.04, 0.04)
# block_urdf = 'block/block.urdf'
# block_colors = [utils.COLORS['red'], utils.COLORS['blue']]
# blocks = []
# for i in range(8):
# block_pose = self.get_random_pose(env, block_size)
# block_id = env.add_object(block_urdf, block_pose, color=block_colors[i % 2])
# blocks.append(block_id)
#
# # Add sphere.
# sphere_size = (0.04, 0.04, 0.04)
# sphere_urdf = 'sphere/sphere.urdf'
# sphere_color = utils.COLORS['green']
# sphere_pose = ((0.5, 0.0, 0.0), (0,0,0,1)) # fixed pose
# sphere_id = env.add_object(sphere_urdf, sphere_pose, color=sphere_color)
#
# # Goal: blocks are arranged in a circle and sphere is in the center.
# circle_radius = 0.1
# circle_center = (0, 0, block_size[2] / 2)
# angles = np.linspace(0, 2 * np.pi, 8, endpoint=False)
# block_poses = [(circle_center[0] + circle_radius * np.cos(angle),
# circle_center[1] + circle_radius * np.sin(angle),
# circle_center[2]) for angle in angles]
# block_poses = [(utils.apply(sphere_pose, pos), sphere_pose[1]) for pos in block_poses]
# self.add_goal(objs=blocks, matches=np.ones((8, 8)), targ_poses=block_poses, replace=False,
# rotations=True, metric='pose', params=None, step_max_reward=8 / 9)
#
# # Goal: sphere is in the center of the blocks.
# self.add_goal(objs=[sphere_id], matches=np.ones((1, 1)), targ_poses=[sphere_pose], replace=False,
# rotations=False, metric='pose', params=None, step_max_reward=1 / 9)
#
# self.lang_goals.append(self.lang_template)
# """
print("generated_code\n", self.generated_code)
print("curr_task_name\n", self.curr_task_name)
yield "Task Generated ==> Asset Generated ==> API Reviewed ==> Error Reviewed ==> Code Generated ==> ", self.generated_code, None
self.generated_tasks.append(self.generated_task)
self.generated_task_assets.append(self.generated_asset)
self.generated_task_programs.append(self.generated_code)
self.generated_task_names.append(self.generated_task_name)
except:
to_print = highlight(f"{str(traceback.format_exc())}", PythonLexer(), TerminalFormatter())
print("Task Creation Exception:", to_print)
self.task_creation_pass = False
# self.curr_task_name = self.generated_task['task-name']
print("task creation time {:.3f}".format(time.time() - start_time))
def setup_env(self):
""" build the new task"""
env = Environment(
self.cfg['assets_root'],
disp=self.cfg['disp'],
shared_memory=self.cfg['shared_memory'],
hz=480,
record_cfg=self.cfg['record']
)
task = eval(self.curr_task_name)()
task.mode = self.cfg['mode']
record = self.cfg['record']['save_video']
save_data = self.cfg['save_data']
# Initialize scripted oracle agent and dataset.
expert = task.oracle(env)
self.cfg['task'] = self.generated_task["task-name"]
data_path = os.path.join(self.cfg['data_dir'], "{}-{}".format(self.generated_task["task-name"], task.mode))
dataset = RavensDataset(data_path, self.cfg, n_demos=0, augment=False)
print(f"Saving to: {data_path}")
print(f"Mode: {task.mode}")
# Start video recording
if record:
env.start_rec(f'{dataset.n_episodes+1:06d}')
return task, dataset, env, expert
def run_one_episode(self, dataset, expert, env, task, episode, seed):
""" run the new task for one episode """
add_to_txt(
self.chat_log, f"================= TRIAL: {self.curr_trials}", with_print=True)
record = self.cfg['record']['save_video']
np.random.seed(seed)
random.seed(seed)
print('Oracle demo: {}/{} | Seed: {}'.format(dataset.n_episodes + 1, self.cfg['n'], seed))
env.set_task(task)
obs = env.reset()
info = env.info
reward = 0
total_reward = 0
# Rollout expert policy
for _ in range(task.max_steps):
act = expert.act(obs, info)
episode.append((obs, act, reward, info))
lang_goal = info['lang_goal']
obs, reward, done, info = env.step(act)
total_reward += reward
print(f'Total Reward: {total_reward:.3f} | Done: {done} | Goal: {lang_goal}')
if done:
break
episode.append((obs, None, reward, info))
return total_reward
def simulate_task(self):
""" simulate the created task and save demonstrations """
total_cnt = 0.
reset_success_cnt = 0.
env_success_cnt = 0.
seed = 123
self.curr_trials += 1
if p.isConnected():
p.disconnect()
if not self.task_creation_pass:
print("task creation failure => count as syntax exceptions.")
return
# Check syntax and compilation-time error
try:
exec(self.generated_code, globals())
task, dataset, env, expert = self.setup_env()
self.syntax_pass_rate += 1
except:
to_print = highlight(f"{str(traceback.format_exc())}", PythonLexer(), TerminalFormatter())
save_text(self.cfg['model_output_dir'], self.generated_task_name + '_error', str(traceback.format_exc()))
print("========================================================")
print("Syntax Exception:", to_print)
return
try:
# Collect environment and collect data from oracle demonstrations.
env.generated_code = self.generated_code
# Set seeds.
episode = []
""" run the new task for one episode """
add_to_txt(
self.chat_log, f"================= TRIAL: {self.curr_trials}", with_print=True)
np.random.seed(seed)
random.seed(seed)
print('Oracle demo: {}/{} | Seed: {}'.format(dataset.n_episodes + 1, self.cfg['n'], seed))
env.set_task(task)
obs = env.reset()
info = env.info
reward = 0
total_reward = 0
# Rollout expert policy
start_time = time.time()
print("start sim")
for i in range(task.max_steps):
act = expert.act(obs, info)
episode.append((obs, act, reward, info))
lang_goal = info['lang_goal']
env.generated_code = self.generated_code
yield from env.step(act)
obs, reward, done, info = env.cur_obs, env.cur_reward, env.cur_done, env.cur_info
total_reward += reward
print(f'Total Reward: {total_reward:.3f} | Done: {done} | Goal: {lang_goal}')
if done:
break
end_time = time.time()
print("end sim, time used = ", end_time - start_time)
yield "Task Generated ==> Asset Generated ==> API Reviewed ==> Error Reviewed ==> Code Generated ==> Simulation Running completed", self.generated_code, env.video_path
episode.append((obs, None, reward, info))
# reset_success_cnt += 1
# env_success_cnt += total_reward > 0.99
#
# self.runtime_pass_rate += 1
print("Runtime Test Pass!")
except:
to_print = highlight(f"{str(traceback.format_exc())}", PythonLexer(), TerminalFormatter())
save_text(self.cfg['model_output_dir'], self.generated_task_name + '_error', str(traceback.format_exc()))
print("========================================================")
print("Runtime Exception:", to_print)
self.memory.save_run(self.generated_task)
|