File size: 1,594 Bytes
ff66cf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import openai
import argparse
import os
from cliport import tasks
from cliport.dataset import RavensDataset
from cliport.environments.environment import Environment
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import TerminalFormatter
import time
import random
import json
from gensim.utils import set_gpt_model, clear_messages, format_finetune_prompt
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default='build-car')
parser.add_argument("--model", type=str, default='davinci:ft-wang-lab:gensim-2023-08-05-16-54-05')
# davinci:ft-mit-cal:gensim-2023-08-06-16-00-56
args = parser.parse_args()
task = args.task
prompt = format_finetune_prompt(task)
if True:
response = openai.Completion.create(
model=args.model,
prompt=prompt,
temperature=0,
max_tokens=1024)
res = response["choices"][0]["text"]
else:
params = {
"model": args.model,
"max_tokens": 500,
"temperature": 0.1,
"messages": [prompt]
}
call_res = openai.ChatCompletion.create(**params)
res = call_res["choices"][0]["message"]["content"]
print("code!:", res)
python_file_path = f"cliport/generated_tasks/finetune_{task.replace('-','_')}.py"
print(f"saving task {args.task} to {python_file_path}")
# evaluate and then save
# with open(python_file_path, "w",
# ) as fhandle:
# fhandle.write(res)
|