File size: 5,572 Bytes
ff66cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import sys
import numpy as np
import hydra

from cliport.dataset import RavensDataset
from cliport.utils import utils
from cliport import tasks
from cliport.environments.environment import Environment

import torch


import matplotlib
import matplotlib.pyplot as plt



mode = 'train'
augment = True

### Uncomment the task you want to generate ###
# task = 'align-rope'
# task = 'assembling-kits-seq-seen-colors'
# task = 'assembling-kits-seq-unseen-colors'
# task = 'assembling-kits-seq-full'
# task = 'packing-shapes'
# task = 'packing-boxes-pairs-seen-colors'
# task = 'packing-boxes-pairs-unseen-colors'
# task = 'packing-boxes-pairs-full'
# task = 'packing-seen-google-objects-seq'
# task = 'packing-unseen-google-objects-seq'
# task = 'packing-seen-google-objects-group'
# task = 'packing-unseen-google-objects-group'
# task = 'put-block-in-bowl-seen-colors'
# task = 'put-block-in-bowl-unseen-colors'
# task = 'put-block-in-bowl-full'
task = 'align-box-corner'
# task = 'stack-block-pyramid-seq-unseen-colors'
# task = 'stack-block-pyramid-seq-full'
# task = 'separating-piles-seen-colors'
# task = 'separating-piles-unseen-colors'
# task = 'separating-piles-full'
# task = 'towers-of-hanoi-seq-seen-colors'
# task = 'towers-of-hanoi-seq-unseen-colors'
# task = 'towers-of-hanoi-seq-full'

### visualization settings
max_episodes = 1
max_steps = 100



root_dir = os.environ['CLIPORT_ROOT']
config_file = 'train.yaml' 
cfg = utils.load_hydra_config(os.path.join(root_dir, f'cliport/cfg/{config_file}'))

# Override defaults
cfg['task'] = task
cfg['mode'] = mode
cfg['train']['data_augmentation'] = True
data_dir = os.path.join(root_dir, 'data')



task = tasks.names[cfg['task']]()
task.mode = mode

ds = RavensDataset(os.path.join(data_dir, f'{cfg["task"]}-{cfg["mode"]}'), cfg, n_demos=10, augment=augment)



color_sums = []
depth_sums = []

total_images = 0

for i in range(0, min(max_episodes, ds.n_episodes)):
    print(f'\n\nEpisode: {i + 1}/{ds.n_episodes}')
    episode, seed = ds.load(i)
    
    total_images += len(episode)-1
    
    total_reward = 0
    for step in range(min(max_steps, len(episode))):
        print(f"\nStep: {step+1}/{len(episode)}")
        obs, act, reward, info = episode[step]
        
        total_reward += reward
        batch = ds[i]
        
        num_images = len(obs['color'])
        fig, axs = plt.subplots(2, num_images+1, figsize=(15, 6))
        for n in range(num_images):
            axs[1, n].imshow(obs['color'][n])
            axs[1, n].set_title(f'Raw RGB {n+1}')
            
            axs[0, n].imshow(obs['depth'][n])
            axs[0, n].set_title(f'Raw Depth {n+1}')
            
        color_sums.append(np.mean(obs['color'][0], axis=(0,1)) / 255.0)
        depth_sums.append(np.mean(obs['depth'][0], axis=(0,1)))
        
        cam_config = None
        if b'camera_info' in info:
            cam_config = ds.get_cam_config(info[b'camera_info'])
        
        img_depth = ds.get_image(obs, cam_config=cam_config)
        img_tensor = torch.from_numpy(img_depth)
        img = np.uint8(img_tensor.detach().cpu().numpy())
        img = img.transpose(1,0,2)
        
        if step < len(episode)-1 and episode[step]:
            batch = ds.process_sample(episode[step], augment=augment)
        else:
            batch = ds.process_goal(episode[step], perturb_params=None)
        
        img_sample = batch['img']
        img_sample = torch.from_numpy(img_sample)
        color = np.uint8(img_sample.detach().cpu().numpy())[:,:,:3]
        color = color.transpose(1,0,2)
        depth = np.array(img_sample.detach().cpu().numpy())[:,:,3]
        depth = depth.transpose(1,0)
        
        axs[0, num_images].imshow(depth)
        axs[0, num_images].set_title('Depth')
        
        axs[1,num_images].imshow(color)
        axs[1,num_images].set_title('RGB + Oracle Pick & Place')
        
        if act and step < len(episode)-1:
            p0 = batch['p0']
            p1 = batch['p1']
            p0_theta = batch['p0_theta']
            p1_theta = batch['p1_theta'] + p0_theta
            
            pick = p0
            place = p1
                
            line_len = 30
            pick0 = (pick[0] + line_len/2.0 * np.sin(p0_theta), pick[1] + line_len/2.0 * np.cos(p0_theta))
            pick1  = (pick[0] - line_len/2.0 * np.sin(p0_theta), pick[1] - line_len/2.0 * np.cos(p0_theta))
            axs[1,num_images].plot((pick1[0], pick0[0]), (pick1[1], pick0[1]), color='r', linewidth=2)
            
            place0 = (place[0] + line_len/2.0 * np.sin(p1_theta), place[1] + line_len/2.0 * np.cos(p1_theta))
            place1  = (place[0] - line_len/2.0 * np.sin(p1_theta), place[1] - line_len/2.0 * np.cos(p1_theta))
            axs[1,num_images].plot((place1[0], place0[0]), (place1[1], place0[1]), color='g', linewidth=2)
            
            c_pick = plt.Circle(pick, 3, color='r', fill=False)
            c_place = plt.Circle(place, 3, color='g', fill=False)

            axs[1,num_images].add_patch(c_pick)
            axs[1,num_images].add_patch(c_place)
            
        plt.show()
        
        print(f"Language Goal: {batch['lang_goal']}")
        print(f"Step Reward: {reward}")
        print(f"Total Reward: {total_reward}")

    print(f"Done, Total Reward: {total_reward}")

print("\n\nDataset Statistics: ")
print(f"Color Mean: {np.mean(color_sums, axis=0)}, Std: {np.std(color_sums, axis=0)}")
print(f"Depth Mean: {np.mean(depth_sums, axis=0)}, Std: {np.std(depth_sums, axis=0)}")
print(f"Total Image-Action Pairs: {total_images}")