File size: 8,301 Bytes
ff66cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
"""Ravens main training script."""

import os
import pickle
import json

import numpy as np
import hydra
from cliport import agents
from cliport import dataset
from cliport import tasks
from cliport.utils import utils
from cliport.environments.environment import Environment
from torch.utils.data import DataLoader


@hydra.main(config_path='./cfg', config_name='eval', version_base="1.2")
def main(vcfg):
    # Load train cfg
    tcfg = utils.load_hydra_config(vcfg['train_config'])

    # Initialize environment and task.
    env = Environment(
        vcfg['assets_root'],
        disp=vcfg['disp'],
        shared_memory=vcfg['shared_memory'],
        hz=480,
        record_cfg=vcfg['record']
    )

    # Choose eval mode and task.
    mode = vcfg['mode']
    eval_task = vcfg['eval_task']
    print("eval_task!!!", eval_task)

    if mode not in {'train', 'val', 'test'}:
        raise Exception("Invalid mode. Valid options: train, val, test")

    # Load eval dataset.
    dataset_type = vcfg['type']
    if 'multi' in dataset_type:
        ds = dataset.RavensMultiTaskDataset(vcfg['data_dir'],
                                            tcfg,
                                            group=eval_task,
                                            mode=mode,
                                            n_demos=vcfg['n_demos'],
                                            augment=False)
    else:
        ds = dataset.RavensDataset(os.path.join(vcfg['data_dir'], f"{eval_task}-{mode}"),
                                   tcfg,
                                   n_demos=vcfg['n_demos'],
                                   augment=False)

    all_results = {}
    name = '{}-{}-n{}'.format(eval_task, vcfg['agent'], vcfg['n_demos'])

    # Save path for results.
    json_name = f"multi-results-{mode}.json" if 'multi' in vcfg['model_path'] else f"results-{mode}.json"
    save_path = vcfg['save_path']
    print(f"Save path for results: {save_path}")
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    save_json = os.path.join(save_path, f'{name}-{json_name}')

    # Load existing results.
    existing_results = {}
    if os.path.exists(save_json):
        with open(save_json, 'r') as f:
            existing_results = json.load(f)

    # Make a list of checkpoints to eval.
    ckpts_to_eval = list_ckpts_to_eval(vcfg, existing_results)
    data_loader = DataLoader(ds, shuffle=False,
                    pin_memory=False,
                    num_workers=1 )
     
    # Evaluation loop
    print(f"Evaluating: {str(ckpts_to_eval)}")
    for ckpt in ckpts_to_eval:
        model_file = os.path.join(vcfg['model_path'], ckpt)

        if not os.path.exists(model_file) or not os.path.isfile(model_file):
            print(f"Checkpoint not found: {model_file}")
            continue
        elif not vcfg['update_results'] and ckpt in existing_results:
            print(f"Skipping because of existing results for {model_file}.")
            continue

        results = []
        mean_reward = 0.0

        # Run testing for each training run.
        for train_run in range(vcfg['n_repeats']):

            # Initialize agent.
            utils.set_seed(train_run, torch=True)
            agent = agents.names[vcfg['agent']](name, tcfg, data_loader, data_loader)

            # Load checkpoint
            agent.load(model_file)
            print(f"Loaded: {model_file}")

            record = vcfg['record']['save_video']
            n_demos = vcfg['n_demos']

            # Run testing and save total rewards with last transition info.
            for i in range(0, n_demos):
                print(f'Test: {i + 1}/{n_demos}')
                try:
                    episode, seed = ds.load(i)
                except:
                    print(f"skip bad example {i}")
                    continue
                goal = episode[-1]
                total_reward = 0
                np.random.seed(seed)

                # set task
                if 'multi' in dataset_type:
                    task_name = ds.get_curr_task()
                    task = tasks.names[task_name]()
                    print(f'Evaluating on {task_name}')
                else:
                    task_name = vcfg['eval_task']
                    task = tasks.names[task_name]()

                task.mode = mode
                env.seed(seed)
                env.set_task(task)
                obs = env.reset()
                info = env.info
                reward = 0

                # Start recording video (NOTE: super slow)
                if record:
                    video_name = f'{task_name}-{i+1:06d}'
                    if 'multi' in vcfg['model_task']:
                        video_name = f"{vcfg['model_task']}-{video_name}"
                    env.start_rec(video_name)

                for _ in range(task.max_steps):
                    act = agent.act(obs, info, goal)
                    lang_goal = info['lang_goal']

                    # print(f'Lang Goal: {lang_goal}')
                    obs, reward, done, info = env.step(act)
                    total_reward += reward
                    # print(f'Total Reward: {total_reward:.3f} | Done: {done}\n')
                    if done:
                        break

                results.append((total_reward, info))
                mean_reward = np.mean([r for r, i in results])
                print(f'Mean: {mean_reward} | Task: {task_name} | Ckpt: {ckpt}')

                # End recording video
                if record:
                    env.end_rec()

            all_results[ckpt] = {
                'episodes': results,
                'mean_reward': mean_reward,
            }

        # Save results in a json file.
        if vcfg['save_results']:
            print("save results to:", save_json)
            # Load existing results
            if os.path.exists(save_json):
                with open(save_json, 'r') as f:
                    existing_results = json.load(f)
                existing_results.update(all_results)
                all_results = existing_results

            with open(save_json, 'w') as f:
                json.dump(all_results, f, indent=4)


def list_ckpts_to_eval(vcfg, existing_results):
    ckpts_to_eval = []

    # Just the last.ckpt
    if vcfg['checkpoint_type'] == 'last':
        last_ckpt = 'last.ckpt'
        ckpts_to_eval.append(last_ckpt)

    # Validation checkpoints that haven't been already evaluated.
    elif vcfg['checkpoint_type'] == 'val_missing':
        checkpoints = sorted([c for c in os.listdir(vcfg['model_path']) if "steps=" in c])
        ckpts_to_eval = [c for c in checkpoints if c not in existing_results]

    # Find the best checkpoint from validation and run eval on the test set.
    elif vcfg['checkpoint_type'] == 'test_best':
        result_jsons = [c for c in os.listdir(vcfg['results_path']) if "results-val" in c]
        if 'multi' in vcfg['model_task']:
            result_jsons = [r for r in result_jsons if "multi" in r]
        else:
            result_jsons = [r for r in result_jsons if "multi" not in r]

        if len(result_jsons) > 0:
            result_json = result_jsons[0]
            with open(os.path.join(vcfg['results_path'], result_json), 'r') as f:
                eval_res = json.load(f)
            best_checkpoint = 'last.ckpt'
            best_success = -1.0
            for ckpt, res in eval_res.items():
                if res['mean_reward'] > best_success:
                    best_checkpoint = ckpt
                    best_success = res['mean_reward']
            print(best_checkpoint)
            ckpt = best_checkpoint
            ckpts_to_eval.append(ckpt)
        else:
            print("No best val ckpt found. Using last.ckpt")
            ckpt = 'last.ckpt'
            ckpts_to_eval.append(ckpt)

    # Load a specific checkpoint with a substring e.g: 'steps=10000'
    else:
        print(f"Looking for: {vcfg['checkpoint_type']}")
        checkpoints = [c for c in os.listdir(vcfg['model_path']) if vcfg['checkpoint_type'] in c]
        checkpoint = checkpoints[0] if len(checkpoints) > 0 else ""
        ckpt = checkpoint
        ckpts_to_eval.append(ckpt)

    print("ckpts_to_eval:", ckpts_to_eval)
    return ckpts_to_eval


if __name__ == '__main__':
    main()