File size: 22,778 Bytes
ff66cf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
================= Task and Asset Design! >>> Prompt: You are an AI in robot simulation code and task design. I will provide you some example tasks, code implementation, and some guidelines for how to generate tasks and then you will help me generate a new task `TARGET_TASK_NAME`. My goal is to design creative and feasible tasks for tabletop manipulation. I will first ask you to describe the task in natural languages and then will let you write the code for it. ========= Here are all the assets. Use only these assets in the task and code design. """ insertion/: ell.urdf fixture.urdf bowl/: bowl.urdf box/: box-template.urdf stacking/: block.urdf stand.urdf zone/: zone.obj zone.urdf pallet/: pallet.obj pallet.urdf ball/: ball-template.urdf cylinder/: cylinder-template.urdf bowl/: bowl.urdf # assets not for picking corner/: corner-template.urdf line/: single-green-line-template.urdf container/: container-template.urdf """ There are certain rules on the asset usage. 1. Sweeping piles task must have small blocks `block/small.urdf` and zones `zone.urdf`. Only the piles can be swept in all assets 2. Insertion tasks must have `insertion/ell.urdf` and `insertion/fixture.urdf`. Only the fixture can be inserted in all assets. ========= Here are some examples of good tasks. Try to be creative and high standard, and avoid overlapping with these tasks. TASK_DESCRIPTION_PROMPT ========= Now let's design the task `TARGET_TASK_NAME`. Please describe the new task `TARGET_TASK_NAME` in natural languages in a clear and detailed way. Format the answer in a python dictionary with keys "task-name" and value type string with lower-case and separated by hyphens, "task-description" (one sentence and do not mention urdf paths) and value type string, and "assets-used" and value type list of strings. Note: - Do not use assets that are not in the list above. - Tasks that have more colors and shapes are interesting. - Be as specific as possible about the number, shape, and color of each asset in the task descriptions. - The task need to obey physics and remain feasible. ========= Now I will provide you some reference code and you can write the code for the task. """ import os import numpy as np from cliport.tasks.task import Task from cliport.utils import utils class PackingShapes(Task): """pick up randomly sized shapes and place them tightly into a container.""" def __init__(self): super().__init__() self.max_steps = 1 self.homogeneous = False self.lang_template = "pack the {obj} in the brown box" self.task_completed_desc = "done packing shapes." self.additional_reset() def reset(self, env): super().reset(env) # Shape Names: shapes = utils.assembling_kit_shapes n_objects = 5 if self.mode == 'train': obj_shapes = np.random.choice(self.train_set, n_objects, replace=False) else: if self.homogeneous: obj_shapes = [np.random.choice(self.test_set, replace=False)] * n_objects else: obj_shapes = np.random.choice(self.test_set, n_objects, replace=False) # Shuffle colors to avoid always picking an object of the same color colors, color_names = utils.get_colors(mode=self.mode) # Add container box. zone_size = self.get_random_size(0.1, 0.15, 0.1, 0.15, 0.05, 0.05) zone_pose = self.get_random_pose(env, zone_size) container_template = 'container/container-template.urdf' replace = {'DIM': zone_size, 'HALF': (zone_size[0] / 2, zone_size[1] / 2, zone_size[2] / 2)} # IMPORTANT: REPLACE THE TEMPLATE URDF with `fill_template` container_urdf = self.fill_template(container_template, replace) env.add_object(container_urdf, zone_pose, 'fixed') # Add objects. objects = [] template = 'kitting/object-template.urdf' for i in range(n_objects): shape = obj_shapes[i] # x, y, z dimensions for the asset size size = (0.08, 0.08, 0.02) pose= self.get_random_pose(env, size) fname = f'{shape:02d}.obj' fname = os.path.join(self.assets_root, 'kitting', fname) scale = [0.003, 0.003, 0.001] replace = {'FNAME': (fname,), 'SCALE': scale, 'COLOR': colors[i]} # IMPORTANT: REPLACE THE TEMPLATE URDF urdf = self.fill_template(template, replace) block_id = env.add_object(urdf, pose) objects.append(block_id) # Pick the first shape. num_objects_to_pick = 1 for i in range(num_objects_to_pick): # IMPORTANT: Specify (obj_pts, [(zone_pose, zone_size)]) for target `zone`. obj_pts is a dict self.add_goal(objs=[objects[i]], matches=np.int32([[1]]), targ_poses=[zone_pose], replace=False, rotations=True, metric='zone', params=[(zone_pose, zone_size)], step_max_reward=1 / num_objects_to_pick) self.lang_goals.append(self.lang_template.format(obj=shapes[obj_shapes[i]])) """ """ import numpy as np from cliport.tasks.task import Task from cliport.utils import utils import pybullet as p class PlaceRedInGreen(Task): """pick up the red blocks and place them into the green bowls amidst other objects.""" def __init__(self): super().__init__() self.max_steps = 10 self.lang_template = "put the red blocks in a green bowl" self.task_completed_desc = "done placing blocks in bowls." self.additional_reset() def reset(self, env): super().reset(env) n_bowls = np.random.randint(1, 4) n_blocks = np.random.randint(1, n_bowls + 1) # Add bowls. # x, y, z dimensions for the asset size bowl_size = (0.12, 0.12, 0) bowl_urdf = 'bowl/bowl.urdf' bowl_poses = [] for _ in range(n_bowls): bowl_pose = self.get_random_pose(env, obj_size=bowl_size) env.add_object(urdf=bowl_urdf, pose=bowl_pose, category='fixed') bowl_poses.append(bowl_pose) # Add blocks. # x, y, z dimensions for the asset size blocks = [] block_size = (0.04, 0.04, 0.04) block_urdf = 'stacking/block.urdf' for _ in range(n_blocks): block_pose = self.get_random_pose(env, obj_size=block_size) block_id = env.add_object(block_urdf, block_pose) blocks.append(block_id) # Goal: each red block is in a different green bowl. self.add_goal(objs=blocks, matches=np.ones((len(blocks), len(bowl_poses))), targ_poses=bowl_poses, replace=False, rotations=True, metric='pose', params=None, step_max_reward=1) self.lang_goals.append(self.lang_template) # Colors of distractor objects. # IMPORTANT: RETRIEVE THE ACTUAL COLOR VALUES bowl_colors = [utils.COLORS[c] for c in utils.COLORS if c != 'green'] block_colors = [utils.COLORS[c] for c in utils.COLORS if c != 'red'] # Add distractors. n_distractors = 0 while n_distractors < 6: is_block = np.random.rand() > 0.5 urdf = block_urdf if is_block else bowl_urdf size = block_size if is_block else bowl_size colors = block_colors if is_block else bowl_colors pose = self.get_random_pose(env, obj_size=size) color = colors[n_distractors % len(colors)] obj_id = env.add_object(urdf, pose, color=color) n_distractors += 1 """ ========= Do not use libraries, functions, and assets that you don't know. For each object, try to describe its color, size, category in the task first before you write the code. You do not need extra helper functions. Comment the code liberally to explain what each piece does and why it's written that way. Now write the code for the task "TASK_NAME_TEMPLATE" in python code block starting with ```python. Reminder: TASK_STRING_TEMPLATE >>> Answer: The task you're asking for is "TARGET_TASK_NAME". This is a placeholder name, so I'll replace it with a concrete task name. Let's design a task called "insert-ell-into-green-fixture". In this task, the robot needs to pick up `insertion/ell.urdf` and `insertion/fixture.urdf` and insert ell into the green fixture. ```python import pybullet as p from cliport.tasks.task import Task from cliport.utils import utils class InsertEllIntoGreenFixture(Task): """Insert ell into the green fixture.""" def __init__(self): super().__init__() self.max_steps = 5 self.lang_template = "insert the ell into the green fixture" self.task_completed_desc = "done inserting ell into fixture." self.additional_reset() def reset(self, env): super().reset(env) # Add ell. ell_size = (0.02, 0.02, 0.02) # x, y, z dimensions for the asset size ell_pose = self.get_random_pose(env, ell_size) ell_urdf = 'insertion/ell.urdf' ell_id = env.add_object(ell_urdf, ell_pose) ell_color = p.getVisualShapeData(ell_id)[0][7] # retrieve the actual color values of ell # Add green fixture. fixture_size = (0.02, 0.02, 0.02) # x, y, z dimensions for the asset size fixture_pose = self.get_random_pose(env, fixture_size) fixture_urdf = 'insertion/fixture.urdf' env.add_object(fixture_urdf, fixture_pose, fixed_base=1, color=utils.COLORS['green']) # Goal: insert ell into the fixture. self.add_goal(objs=[ell_id], matches=[[1]], targ_poses=[fixture_pose], replace=False, rotations=True, metric='pose', params=None, step_max_reward=1) self.lang_goals.append(self.lang_template.format(obj='ell', color=ell_color)) ``` The task is designed to test the robot's ability to perform delicate manipulations. It must pick up the ell, move it to the fixture, and then insert it. The ell and fixture are positioned in random locations at the start of each task instance, ensuring a diverse range of scenarios. ================= Code Generation! >>> Prompt: Now I will provide you some reference code and you can write the code for the task "dummy". """ import os import numpy as np from cliport.tasks.task import Task from cliport.utils import utils class PackingShapes(Task): """pick up randomly sized shapes and place them tightly into a container.""" def __init__(self): super().__init__() self.max_steps = 1 self.homogeneous = False self.lang_template = "pack the {obj} in the brown box" self.task_completed_desc = "done packing shapes." self.additional_reset() def reset(self, env): super().reset(env) # Shape Names: shapes = utils.assembling_kit_shapes n_objects = 5 if self.mode == 'train': obj_shapes = np.random.choice(self.train_set, n_objects, replace=False) else: if self.homogeneous: obj_shapes = [np.random.choice(self.test_set, replace=False)] * n_objects else: obj_shapes = np.random.choice(self.test_set, n_objects, replace=False) # Shuffle colors to avoid always picking an object of the same color colors, color_names = utils.get_colors(mode=self.mode) # Add container box. zone_size = self.get_random_size(0.1, 0.15, 0.1, 0.15, 0.05, 0.05) zone_pose = self.get_random_pose(env, zone_size) container_template = 'container/container-template.urdf' replace = {'DIM': zone_size, 'HALF': (zone_size[0] / 2, zone_size[1] / 2, zone_size[2] / 2)} # IMPORTANT: REPLACE THE TEMPLATE URDF with `fill_template` container_urdf = self.fill_template(container_template, replace) env.add_object(container_urdf, zone_pose, 'fixed') # Add objects. objects = [] template = 'kitting/object-template.urdf' for i in range(n_objects): shape = obj_shapes[i] # x, y, z dimensions for the asset size size = (0.08, 0.08, 0.02) pose= self.get_random_pose(env, size) fname = f'{shape:02d}.obj' fname = os.path.join(self.assets_root, 'kitting', fname) scale = [0.003, 0.003, 0.001] # .0005 replace = {'FNAME': (fname,), 'SCALE': scale, 'COLOR': colors[i]} # IMPORTANT: REPLACE THE TEMPLATE URDF urdf = self.fill_template(template, replace) block_id = env.add_object(urdf, pose) objects.append(block_id) # Pick the first shape. num_objects_to_pick = 1 for i in range(num_objects_to_pick): # IMPORTANT: Specify (obj_pts, [(zone_pose, zone_size)]) for target `zone`. obj_pts is a dict language_goal = self.lang_template.format(obj=shapes[obj_shapes[i]]) self.add_goal(objs=[objects[i]], matches=np.int32([[1]]), targ_poses=[zone_pose], replace=False, rotations=True, metric='zone', params=[(zone_pose, zone_size)], step_max_reward=1 / num_objects_to_pick, language_goal=language_goal) """ """ import numpy as np from cliport.tasks.task import Task from cliport.utils import utils import pybullet as p class PlaceRedInGreen(Task): """pick up the red blocks and place them into the green bowls amidst other objects.""" def __init__(self): super().__init__() self.max_steps = 10 self.lang_template = "put the red blocks in a green bowl" self.task_completed_desc = "done placing blocks in bowls." self.additional_reset() def reset(self, env): super().reset(env) n_bowls = np.random.randint(1, 4) n_blocks = np.random.randint(1, n_bowls + 1) # Add bowls. # x, y, z dimensions for the asset size bowl_size = (0.12, 0.12, 0) bowl_urdf = 'bowl/bowl.urdf' bowl_poses = [] for _ in range(n_bowls): bowl_pose = self.get_random_pose(env, obj_size=bowl_size) env.add_object(urdf=bowl_urdf, pose=bowl_pose, category='fixed') bowl_poses.append(bowl_pose) # Add blocks. # x, y, z dimensions for the asset size blocks = [] block_size = (0.04, 0.04, 0.04) block_urdf = 'stacking/block.urdf' for _ in range(n_blocks): block_pose = self.get_random_pose(env, obj_size=block_size) block_id = env.add_object(block_urdf, block_pose) blocks.append(block_id) # Goal: each red block is in a different green bowl. self.add_goal(objs=blocks, matches=np.ones((len(blocks), len(bowl_poses))), targ_poses=bowl_poses, replace=False, rotations=True, metric='pose', params=None, step_max_reward=1, language_goal=self.lang_template) # Colors of distractor objects. bowl_colors = [utils.COLORS[c] for c in utils.COLORS if c != 'green'] block_colors = [utils.COLORS[c] for c in utils.COLORS if c != 'red'] # Add distractors. n_distractors = 0 while n_distractors < 6: is_block = np.random.rand() > 0.5 urdf = block_urdf if is_block else bowl_urdf size = block_size if is_block else bowl_size colors = block_colors if is_block else bowl_colors pose = self.get_random_pose(env, obj_size=size) color = colors[n_distractors % len(colors)] obj_id = env.add_object(urdf, pose, color=color) n_distractors += 1 """ """ import numpy as np from cliport.tasks import primitives from cliport.tasks.grippers import Spatula from cliport.tasks.task import Task from cliport.utils import utils class SweepingPiles(Task): """Push piles of small objects into a target goal zone marked on the tabletop.""" def __init__(self): super().__init__() self.max_steps = 20 self.lang_template = "push the pile of blocks into the green square" self.task_completed_desc = "done sweeping." self.primitive = primitives.push self.ee = Spatula self.additional_reset() def reset(self, env): super().reset(env) # Add goal zone. zone_size = (0.12, 0.12, 0) zone_pose = self.get_random_pose(env, zone_size) env.add_object('zone/zone.urdf', zone_pose, 'fixed') # Add pile of small blocks with `make_piles` function obj_ids = self.make_piles(env) # Add goal self.add_goal(objs=obj_ids, matches=np.ones((50, 1)), targ_poses=[zone_pose], replace=True, rotations=False, metric='zone', params=[(zone_pose, zone_size)], step_max_reward=1, language_goal=self.lang_template) """ """ import numpy as np from cliport.tasks.task import Task from cliport.utils import utils import pybullet as p class StackBlockPyramid(Task): """Build a pyramid of colored blocks in a color sequence""" def __init__(self): super().__init__() self.max_steps = 12 self.lang_template = "make the {row} row with {blocks}" self.task_completed_desc = "done stacking block pyramid." self.additional_reset() def reset(self, env): super().reset(env) # Add base. base_size = (0.05, 0.15, 0.005) base_urdf = 'stacking/stand.urdf' base_pose = self.get_random_pose(env, base_size) env.add_object(base_urdf, base_pose, category='fixed') # Block colors. colors = [ utils.COLORS['purple'], utils.COLORS['blue'], utils.COLORS['green'], utils.COLORS['yellow'], utils.COLORS['orange'], utils.COLORS['red'] ] # Add blocks. block_size = (0.04, 0.04, 0.04) block_urdf = 'stacking/block.urdf' objs = [] for i in range(6): block_pose = self.get_random_pose(env, block_size) block_id = env.add_object(block_urdf, block_pose, color=colors[i]) objs.append(block_id) # IMPORTANT Associate placement locations for goals. place_pos = [(0, -0.05, 0.03), (0, 0, 0.03), (0, 0.05, 0.03), (0, -0.025, 0.08), (0, 0.025, 0.08), (0, 0, 0.13)] targs = [(utils.apply(base_pose, i), base_pose[1]) for i in place_pos] # Goal: blocks are stacked in a pyramid (bottom row: green, blue, purple). language_goal = self.lang_template.format(blocks="the green, blue and purple blocks", row="bottom") self.add_goal(objs=objs[:3], matches=np.ones((3, 3)), targ_poses=targs[:3], replace=False, rotations=True, metric='pose', params=None, step_max_reward=1 / 2, symmetries=[np.pi/2]*3, language_goal=language_goal) # Goal: blocks are stacked in a pyramid (middle row: yellow, orange). language_goal = self.lang_template.format(blocks="the yellow and orange blocks", row="middle") self.add_goal(objs=objs[3:5], matches=np.ones((2, 2)), targ_poses=targs[3:5], replace=False, rotations=True, metric='pose', params=None, step_max_reward=1 / 3, symmetries=[np.pi/2]*2, language_goal=language_goal) # Goal: blocks are stacked in a pyramid (top row: red). language_goal = self.lang_template.format(blocks="the red block", row="top") self.add_goal(objs=objs[5:], matches=np.ones((1, 1)), targ_poses=targs[5:], replace=False, rotations=True, metric='pose', params=None, step_max_reward=1 / 6, symmetries=[np.pi/2]*1, language_goal=language_goal) """ Do not use libraries, functions, and assets that you don't know. For each object, try to describe its color, size, category in the task first before you write the code. You do not need extra helper functions. Comment the code liberally to explain what each piece does and why it's written that way. If you have only one goal, `step_max_reward` in `add_goal` should be 1. Use functions `make_piles` and `make_ropes` for creating piles and cables. To use spatula together with the push primitives, import the libraries """ from cliport.tasks import primitives; from cliport.tasks.grippers import Spatula """ and then use `self.primitive = primitives.push` and `self.ee = Spatula`. Note that the number of language goals usually match the number of motion goals, since they should correspond to each other. Now write the code for the task "dummy" in python code block starting with ```python. Reminder: {'task-name': 'dummy', 'assets-used': [], 'task_descriptions': ''} >>> Answer: The task "dummy" is a placeholder task. I'll replace it with a concrete task called "sweep-red-blocks-into-zone". In this task, the robot needs to sweep a pile of red blocks into a designated zone. ```python import numpy as np from cliport.tasks import primitives from cliport.tasks.grippers import Spatula from cliport.tasks.task import Task from cliport.utils import utils class SweepRedBlocksIntoZone(Task): """Sweep a pile of red blocks into a designated zone.""" def __init__(self): super().__init__() self.max_steps = 20 self.lang_template = "sweep the pile of red blocks into the green square" self.task_completed_desc = "done sweeping." self.primitive = primitives.push self.ee = Spatula self.additional_reset() def reset(self, env): super().__init__(env) # Add goal zone. zone_size = (0.12, 0.12, 0) zone_pose = self.get_random_pose(env, zone_size) env.add_object('zone/zone.urdf', zone_pose, 'fixed') # Add pile of red blocks with `make_piles` function block_urdf = 'stacking/block.urdf' block_size = (0.04, 0.04, 0.04) block_color = utils.COLORS['red'] pile_pose = self.get_random_pose(env, block_size) pile_ids = self.make_piles(env, block_urdf, block_size, block_color, pile_pose, num_piles=1, num_objs=5) # Add goal self.add_goal(objs=pile_ids, matches=np.ones((5, 1)), targ_poses=[zone_pose], replace=True, rotations=False, metric='zone', params=[(zone_pose, zone_size)], step_max_reward=1, language_goal=self.lang_template) ``` In this task, the robot is required to sweep a pile of red blocks into a designated zone. The pile of blocks and the zone are positioned randomly at the start of each task instance, ensuring a diverse range of scenarios. The robot is equipped with a spatula and uses the push primitive to perform the task. The task is completed when all blocks are within the zone. ================= TRIAL: 1 |